Another Critique of Effective Altruism
Published:
I’ve decided to branch out a bit from technical discussions and engage in, as Scott Aaronson would call it, some metaphysical spouting. The topic of today is the effective altruism movement. I’m about to be relentlessly critical of it, so this is probably not the best post to read as your first introduction. Instead, read this and this. Then you can read what follows (but keep in mind that there are also many good things about the EA movement that I’m failing to mention here).
Another Critique of Effective Altruism
Recently Ben Kuhn wrote a critique of effective altruism. I’m glad to see such self-examination taking place, but I’m also concerned that the essay did not attack some of the most serious issues I see in the effective altruist movement, so I’ve decided to write my own critique. Due to time constraints, this critique is short and incomplete. I’ve tried to bring up arguments that would make people feel uncomfortable and defensive; hopefully I’ve succeeded.
Briefly, here are some of the major issues I have with the effective altruism movement as it currently stands:
- Over-focus on “tried and true” and “default” options, which may both reduce actual impact and decrease exploration of new potentially high-value opportunities.
- Over-confident claims coupled with insufficient background research.
- Over-reliance on a small set of tools for assessing opportunities, which lead many to underestimate the value of things such as “flow-through” effects.
The common theme here is a subtle underlying message that simple, shallow analyses can allow one to make high-impact career and giving choices, and divest one of the need to dig further. I doubt that anyone explicitly believes this, but I do believe that this theme comes out implicitly both in arguments people make and in actions people take.
Lest this essay give a mistaken impression to the casual reader, I should note that there are many examplary effective altruists who I feel are mostly immune to the issues above; for instance, the GiveWell blog does a very good job of warning against the first and third points above, and I would recommend anyone who isn’t already to subscribe to it (and there are other examples that I’m failing to mention). But for the purposes of this essay, I will ignore this fact except for the current caveat.
Over-focus on “tried and true” options
It seems to me that the effective altruist movement over-focuses on “tried and true” options, both in giving opportunities and in career paths. Perhaps the biggest example of this is the prevalence of “earning to give”. While this is certainly an admirable option, it should be considered as a baseline to improve upon, not a definitive answer.
The biggest issue with the “earning to give” path is that careers in finance and software (the two most common avenues for this) are incredibly straight-forward and secure. The two things that finance and software have in common is that there is a well-defined application process similar to the one for undergraduate admissions, and given reasonable job performance one will continue to be given promotions and raises (this probably entails working hard, but the end result is still rarely in doubt). One also gets a constant source of extrinsic positive reinforcement from the money they earn. Why do I call these things an “issue”? Because I think that these attributes encourage people to pursue these paths without looking for less obvious, less certain, but ultimately better paths. One in six Yale graduates go into finance and consulting, seemingly due to the simplicity of applying and the easy supply of extrinsic motivation. My intuition is that this ratio is higher than an optimal society would have, even if such people commonly gave generously (and it is certainly much higher than the number of people who enter college planning to pursue such paths).
Contrast this with, for instance, working at a start-up. Most start-ups are low-impact, but it is undeniable that at least some have been extraordinarily high-impact, so this seems like an area that effective altruists should be considering strongly. Why aren’t there more of us at 23&me, or Coursera, or Quora, or Stripe? I think it is because these opportunities are less obvious and take more work to find, once you start working it often isn’t clear whether what you’re doing will have a positive impact or not, and your future job security is massively uncertain. There are few sources of extrinsic motivation in such a career: perhaps moreso at one of the companies mentioned above, which are reasonably established and have customers, but what about the 4-person start-up teams working in a warehouse somewhere? Some of them will go on to do great things but right now their lives must be full of anxiousness and uncertainty.
I don’t mean to fetishize start-ups. They are just one well-known example of a potentially high-value career path that, to me, seems underexplored within the EA movement. I would argue (perhaps self-servingly) that academia is another example of such a path, with similar psychological obstacles: every 5 years or so you have the opportunity to get kicked out (e.g. applying for faculty jobs, and being up for tenure), you need to relocate regularly, few people will read your work and even fewer will praise it, and it won’t be clear whether it had a positive impact until many years down the road. And beyond the “obvious” alternatives of start-ups and academia, what of the paths that haven’t been created yet? GiveWell was revolutionary when it came about. Who will be the next GiveWell? And by this I don’t mean the next charity evaluator, but the next set of people who fundamentally alter how we view altruism.
Over-confident claims coupled with insufficient background research
The history of effective altruism is littered with over-confident claims, many of which have later turned out to be false. In 2009, Peter Singer claimed that you could save a life for \$200 (and many others repeated his claim). While the number was already questionable at the time, by 2011 we discovered that the number was completely off. Now new numbers were thrown around: from numbers still in the hundreds of dollars (GWWC’s estimate for SCI, which was later shown to be flawed) up to \$1600 (GiveWell’s estimate for AMF, which GiveWell itself expected to go up, and which indeed did go up). These numbers were often cited without caveats, as well as other claims such as that the effectiveness of charities can vary by a factor of 1,000. How many people citing these numbers understood the process that generated them, or the high degree of uncertainty surrounding them, or the inaccuracy of past estimates? How many would have pointed out that saying that charities vary by a factor of 1,000 in effectiveness is by itself not very helpful, and is more a statement about how bad the bottom end is than how good the top end is?
More problematic than the careless bandying of numbers is the tendency toward not doing strong background research. A common pattern I see is: an effective altruist makes a bold claim, then when pressed on it offers a heuristic justification together with the claim that “estimation is the best we have”. This sort of argument acts as a conversation-stopper (and can also be quite annoying, which may be part of what drives some people away from effective altruism). In many of these cases, there are relatively easy opportunities to do background reading to further educate oneself about the claim being made. It can appear to an outside observer as though people are opting for the fun, easy activity (speculation) rather than the harder and more worthwhile activity (research). Again, I’m not claiming that this is people’s explicit thought process, but it does seem to be what ends up happening.
Why haven’t more EAs signed up for a course on global security, or tried to understand how DARPA funds projects, or learned about third-world health? I’ve heard claims that this would be too time-consuming relative to the value it provides, but this seems like a poor excuse if we want to be taken seriously as a movement (or even just want to reach consistently accurate conclusions about the world).
Over-reliance on a small set of tools
Effective altruists tend to have a lot of interest in quantitative estimates. We want to know what the best thing to do is, and we want a numerical value. This causes us to rely on scientific studies, economic reports, and Fermi estimates. It can cause us to underweight things like the competence of a particular organization, the strength of the people involved, and other “intangibles” (which are often not actually intangible but simply difficult to assign a number to). It also can cause us to over-focus on money as a unit of altruism, while often-times “it isn’t about the money”: it’s about doing the groundwork that no one is doing, or finding the opportunity that no one has found yet.
Quantitative estimates often also tend to ignore flow-through effects: effects which are an indirect, rather than direct, result of an action (such as decreased disease in the third world contributing in the long run to increased global security). These effects are difficult to quantify but human and cultural intuition can do a reasonable job of taking them into account. As such, I often worry that effective altruists may actually be less effective than “normal” altruists. (One can point to all sorts of examples of farcical charities to claim that regular altruism sucks, but this misses the point that there are also amazing organizations out there, such as the Simons Foundation or HHMI, which are doing enormous amounts of good despite not subscribing to the EA philosophy.)
What’s particularly worrisome is that even if we were less effective than normal altruists, we would probably still end up looking better by our own standards, which explicitly fail to account for the ways in which normal altruists might outperform us (see above). This is a problem with any paradigm, but the fact that the effective altruist community is small and insular and relies heavily on its paradigm makes us far more susceptible to it.