
STAT260 Problem Set 5

Due December 11th via e-mail to jsteinhardt+pset5@berkeley.edu

Regular problems:

1. Consider a logistic regression model with loss `(θ;x, y) = − log σ(y〈θ, x〉), where σ(z) = 1
1+exp(−z) .

Show that maxx̄:‖x̄−x‖∞≤ε `(θ; x̄, y) is equal to − log σ(y〈θ, x〉 − ε‖θ‖1).

(Observe that this shows that for linear models, robustness in `∞ is asking for some combination of
maximizing the margin of classification and minimizing the `1-norm of θ.)

2. Suppose we observe data (x1, t1, y1), . . . , (xn, tn, yn) drawn i.i.d. from p and satisfying the unconfounded-
ness assumption, with known true propensity scores πi = π(xi) (i.e. it is known that p(T = 1 | xi) = πi).
Consider the clipped inverse-propensity weighted estimator for the average treatment effect:
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where the clipping parameter M ensures that the clipped inverse propensity weights are all at most M .
Assuming that y ∈ [−1, 1] almost surely, show that the bias of the estimator is at most

Ex∼p[max(1− π(x)M, 0) + max(1− (1− π(x))M, 0)], (2)

while the variance is at most M2/n.

3. Recall that for a regression problem, the (non-robust) standard error is given by σ2

n S
−1, while the

robust standard error is given by 1
nS
−1ΩS−1, where
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(yi − 〈ŵ, xi〉)2, (4)
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and ŵ is the ordinary least squares estimate from (x1, y1), . . . , (xn, yn).

Show that the robust standard error can be arbitrarily larger than the standard error. In other words,

show that for any real number t there is a collection of points (xi, yi) such that 1
nS
−1ΩS−1 � t · σ

2

n S
−1.

Challenge problems (turn in as a separate document typset in LaTeX):

4. Call a set of points S = {x1, . . . , xs} (ε, κ)-dimension-preserving if 1
|T |
∑
i∈T xix

>
i � κ−1 1

|S|
∑
i∈S xix

>
i

for all T ⊆ S with |T | ≥ ε|S|.
Consider a linear-regression setting where we observe (x1, y1), . . . , (xn, yn). Suppose that there is
a set S∗ of αn of the xi that are (α/4, κ)-dimension-preserving, and that for these points we have
yi = 〈w∗, xi〉 + zi, where zi ∼ N (0, σ2I). Show that with high probability it is possible to output a
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set of m = O(1/α) candidates ŵ1, . . . , ŵm such that, for at least one of the elements ŵl, the excess
prediction loss on S∗ satisfies

1

|S∗|
∑
i∈S∗

(〈ŵl, xi〉 − yi)2 − (〈w∗, xi〉 − yi)2 = O
(
κσ2 log(1/α)

α

)
. (6)

[Note: This should be true as stated, but you will get full points for any bound that is polynomial in κ,
σ, and α, as long as it is independent of the dimension d for n sufficiently large.]

5. Consider a two-layer neural network f(x) = c>max(Wx, 0), where x ∈ Rd, W ∈ Rm×d, and c ∈ Rm.
Take c to be the all-1s vector and each entry of W to be drawn independently and uniformly from
{−1,+1}. Let fLP be the upper bound on max{f(x) | ‖x‖∞ ≤ 1} certified by the LP, and fSDP be
the same upper bound certified by the SDP. Show that fLP = Ω(md) almost surely, while fSDP =
O(m

√
d+ d

√
m) with probability 1− exp(−Ω(m+ d)).

For reference, the SDP relaxation in this case would be

maximize c>z (7)

subject to

 1 x> z>

x X Y >

z Y Z

 � 0,

diag(X) ≤ 1,

z ≥ 0, z ≥Wx,

diag(Z) = diag(WY >).

2


