STAT260 Problem Set 5

Due December 11th via e-mail to jsteinhardt+pset5@berkeley.edu

Regular problems:

1. Consider a logistic regression model with loss $\ell(\theta; x, y) = -\log \sigma(y\langle \theta, x \rangle)$, where $\sigma(z) = \frac{1}{1 + \exp(-z)}$. Show that $\max_{\bar{x}: \|\bar{x}-x\|_{\infty} \leq \epsilon} \ell(\theta; \bar{x}, y)$ is equal to $-\log \sigma(y\langle \theta, x \rangle - \epsilon \|\theta\|_1)$. (Observe that this shows that for linear models, robustness in ℓ_{∞} is asking for some combination of

maximizing the margin of classification and minimizing the ℓ_1 -norm of θ .)

2. Suppose we observe data $(x_1, t_1, y_1), \ldots, (x_n, t_n, y_n)$ drawn i.i.d. from p and satisfying the unconfoundedness assumption, with known true propensity scores $\pi_i = \pi(x_i)$ (i.e. it is known that $p(T = 1 | x_i) = \pi_i$). Consider the clipped inverse-propensity weighted estimator for the average treatment effect:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\mathbb{I}[t_i = 1]}{\max(\pi_i, 1/M)} - \frac{\mathbb{I}[t_i = 0]}{\max(1 - \pi_i, 1/M)} \right) y_i,\tag{1}$$

where the clipping parameter M ensures that the clipped inverse propensity weights are all at most M. Assuming that $y \in [-1, 1]$ almost surely, show that the bias of the estimator is at most

$$\mathbb{E}_{x \sim p}[\max(1 - \pi(x)M, 0) + \max(1 - (1 - \pi(x))M, 0)],$$
(2)

while the variance is at most M^2/n .

3. Recall that for a regression problem, the (non-robust) standard error is given by $\frac{\sigma^2}{n}S^{-1}$, while the robust standard error is given by $\frac{1}{n}S^{-1}\Omega S^{-1}$, where

$$S = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}},\tag{3}$$

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \langle \hat{w}, x_{i} \rangle)^{2}, \tag{4}$$

$$\Omega = \frac{1}{n} \sum_{i=1}^{n} x_i (y_i - \langle \hat{w}, x_i \rangle)^2 x_i^{\top},$$
(5)

and \hat{w} is the ordinary least squares estimate from $(x_1, y_1), \ldots, (x_n, y_n)$.

Show that the robust standard error can be arbitrarily larger than the standard error. In other words, show that for any real number t there is a collection of points (x_i, y_i) such that $\frac{1}{n}S^{-1}\Omega S^{-1} \succeq t \cdot \frac{\sigma^2}{n}S^{-1}$.

Challenge problems (turn in as a separate document typset in LaTeX):

4. Call a set of points $S = \{x_1, \ldots, x_s\}$ (ϵ, κ) -dimension-preserving if $\frac{1}{|T|} \sum_{i \in T} x_i x_i^\top \succeq \kappa^{-1} \frac{1}{|S|} \sum_{i \in S} x_i x_i^\top$ for all $T \subseteq S$ with $|T| \ge \epsilon |S|$.

Consider a linear-regression setting where we observe $(x_1, y_1), \ldots, (x_n, y_n)$. Suppose that there is a set S^* of αn of the x_i that are $(\alpha/4, \kappa)$ -dimension-preserving, and that for these points we have $y_i = \langle w^*, x_i \rangle + z_i$, where $z_i \sim \mathcal{N}(0, \sigma^2 I)$. Show that with high probability it is possible to output a set of $m = \mathcal{O}(1/\alpha)$ candidates $\hat{w}_1, \ldots, \hat{w}_m$ such that, for at least one of the elements \hat{w}_l , the excess prediction loss on S^* satisfies

$$\frac{1}{|S^*|} \sum_{i \in S^*} (\langle \hat{w}_l, x_i \rangle - y_i)^2 - (\langle w^*, x_i \rangle - y_i)^2 = \mathcal{O}\left(\kappa \sigma^2 \frac{\log(1/\alpha)}{\alpha}\right).$$
(6)

[Note: This should be true as stated, but you will get full points for any bound that is polynomial in κ , σ , and α , as long as it is independent of the dimension d for n sufficiently large.]

5. Consider a two-layer neural network $f(x) = c^{\top} \max(Wx, 0)$, where $x \in \mathbb{R}^d$, $W \in \mathbb{R}^{m \times d}$, and $c \in \mathbb{R}^m$. Take c to be the all-1s vector and each entry of W to be drawn independently and uniformly from $\{-1, +1\}$. Let f_{LP} be the upper bound on $\max\{f(x) \mid ||x||_{\infty} \leq 1\}$ certified by the LP, and f_{SDP} be the same upper bound certified by the SDP. Show that $f_{LP} = \Omega(md)$ almost surely, while $f_{SDP} = \mathcal{O}(m\sqrt{d} + d\sqrt{m})$ with probability $1 - \exp(-\Omega(m+d))$.

For reference, the SDP relaxation in this case would be

maximize
$$c^{\top}z$$
 (7)
subject to $\begin{bmatrix} 1 & x^{\top} & z^{\top} \\ x & X & Y^{\top} \\ z & Y & Z \end{bmatrix} \succeq 0,$
diag $(X) \leq 1,$
 $z \geq 0, z \geq Wx,$
diag $(Z) = \operatorname{diag}(WY^{\top}).$