STAT260 Problem Set 2

Due October 8th in class

Regular problems:

- 1. Suppose that p^* is $(\sigma, 1/2)$ -resilient. Show that $\mathbb{E}_{p^*}[|\langle X \mu, v \rangle|] \leq C\sigma$ whenever $||v||_* \leq 1$, for some absolute constant C.
- 2. For a norm $\|\cdot\|$ and Orlicz function ψ , define the generalized Orlicz norm $\|X\|_{\psi,\|\cdot\|} = \sup\{\|\langle X, v\rangle\|_{\psi} \mid \|v\|_* \leq 1\}$. Show that if $\|X \mu\|_{\psi,\|\cdot\|} \leq \sigma$ for $X \sim p$, and $\epsilon \leq 1/2$, then p is $(2\sigma\epsilon\psi^{-1}(1/\epsilon), \epsilon)$ -resilient under the norm $\|\cdot\|$.
- 3. Prove that if p^* has bounded 4th moments (i.e., $\sup_{\|v\|_2 \leq 1} \mathbb{E}[|\langle x \mu, v \rangle|^4] \leq \sigma^4$), then $\mathbb{E}[\|x \mu\|_2^4]^{1/4} \leq C\sigma\sqrt{d}$ for some absolute constant C.
- 4. Given a κ -approximate oracle, and assuming $v^{\top} \mathsf{Cov}_{p^*}[X] v \leq \sigma^2$ whenever $||v||_* \leq 1$, show that the FilterNorm algorithm does indeed produce an estimate $\hat{\mu}$ of $\mu = \mathbb{E}_{p^*}[X]$ such that $||\hat{\mu} \mu|| = \mathcal{O}(\sigma\sqrt{\kappa\epsilon})$.
- 5. Suppose that p^* is sub-Gaussian with parameter σ and $\mathsf{TV}(p^*, \tilde{p}) \leq \epsilon$. Show that given $n \gg \frac{d + \log^2(1/\delta)}{\epsilon^2 \log(1/\epsilon)}$ samples from \tilde{p} , we can estimate the mean of p^* with error $\mathcal{O}(\sigma \epsilon \sqrt{\log(1/\epsilon)})$ and probability $1 - \delta$.

[This can be done by imitating the kth moment proof from class, but for bounding $\|\sum_i \epsilon_i X_i\|_2$ you may wish to use an alternative to Rosenthal; for instance, try obtaining a high probability bound on $\|\sum_i \epsilon_i X_i\|_2$ and then integrating. The $\log^2(1/\delta)$ term is not necessary (we can achieve $\log(1/\delta)$), but is included to give some leeway in the proof.]

Challenge problems (turn in as a separate document typset in LaTeX):

6. Suppose that p^* is $(\sigma, 1/2)$ -resilient in the ℓ_2 -norm. Show that there is an event E with $\mathbb{P}[E] \ge 1/2$ such that $\|\mathsf{Cov}_{p^*}[X \mid E]\| \le C\sigma^2$ for some absolute constant C. [Hint: use the minmax theorem, which states that for $f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, if f is convex in x and concave in y then we have

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} f(x, y),$$

as long as \mathcal{X} and \mathcal{Y} are convex and at least one of them is compact.]

While it is not necessary, you are free to assume that p^* is the uniform distribution over samples $\{x_1, \ldots, x_n\}$ if you wish, in order to avoid issues with infinite-dimensional spaces.

7. Suppose we wish to approximate $\sup_{\|v\|_4 \leq 1} v^{\top} \Sigma v$, where $\|v\|_4 = (|v_1|^4 + \cdots + |v_d|^4)^{1/4}$. As with the ℓ_{∞} -norm, we can relax this to the convex program

maximize
$$\langle \Sigma, M \rangle$$
 (1)

subject to
$$M \succeq 0, \sum_{i} M_{ii}^2 \le 1.$$
 (2)

Show that this provides a $(\pi/2)$ -approximate oracle for $\sup_{\|v\|_4 < 1} v^\top \Sigma v$, assuming that $\Sigma \succeq 0$.