STAT260 Problem Set 2

Due October 8th in class

Regular problems:

1. Suppose that p^{*} is $(\sigma, 1 / 2)$-resilient. Show that $\mathbb{E}_{p^{*}}[|\langle X-\mu, v\rangle|] \leq C \sigma$ whenever $\|v\|_{*} \leq 1$, for some absolute constant C.
2. For a norm $\|\cdot\|$ and Orlicz function ψ, define the generalized Orlicz norm $\|X\|_{\psi,\|\cdot\|}=\sup \left\{\|\langle X, v\rangle\|_{\psi} \mid\right.$ $\left.\|v\|_{*} \leq 1\right\}$. Show that if $\|X-\mu\|_{\psi,\|\cdot\|} \leq \sigma$ for $X \sim p$, and $\epsilon \leq 1 / 2$, then p is $\left(2 \sigma \epsilon \psi^{-1}(1 / \epsilon), \epsilon\right)$-resilient under the norm $\|\cdot\|$.
3. Prove that if p^{*} has bounded 4th moments (i.e., $\sup _{\|v\|_{2} \leq 1} \mathbb{E}\left[|\langle x-\mu, v\rangle|^{4}\right] \leq \sigma^{4}$), then $\mathbb{E}\left[\|x-\mu\|_{2}^{4}\right]^{1 / 4} \leq$ $C \sigma \sqrt{d}$ for some absolute constant C.
4. Given a κ-approximate oracle, and assuming $v^{\top} \operatorname{Cov}_{p^{*}}[X] v \leq \sigma^{2}$ whenever $\|v\|_{*} \leq 1$, show that the FilterNorm algorithm does indeed produce an estimate $\hat{\mu}$ of $\mu=\mathbb{E}_{p^{*}}[X]$ such that $\|\hat{\mu}-\mu\|=\mathcal{O}(\sigma \sqrt{\kappa \epsilon})$.
5. Suppose that p^{*} is sub-Gaussian with parameter σ and $\operatorname{TV}\left(p^{*}, \tilde{p}\right) \leq \epsilon$. Show that given $n \gg \frac{d+\log ^{2}(1 / \delta)}{\epsilon^{2} \log (1 / \epsilon)}$ samples from \tilde{p}, we can estimate the mean of p^{*} with error $\mathcal{O}(\sigma \epsilon \sqrt{\log (1 / \epsilon)})$ and probability $1-\delta$.
[This can be done by imitating the k th moment proof from class, but for bounding $\left\|\sum_{i} \epsilon_{i} X_{i}\right\|_{2}$ you may wish to use an alternative to Rosenthal; for instance, try obtaining a high probability bound on $\left\|\sum_{i} \epsilon_{i} X_{i}\right\|_{2}$ and then integrating. The $\log ^{2}(1 / \delta)$ term is not necessary (we can achieve $\log (1 / \delta)$), but is included to give some leeway in the proof.]

Challenge problems (turn in as a separate document typset in LaTeX):

6. Suppose that p^{*} is $(\sigma, 1 / 2)$-resilient in the ℓ_{2}-norm. Show that there is an event E with $\mathbb{P}[E] \geq 1 / 2$ such that $\left\|\operatorname{Cov}_{p^{*}}[X \mid E]\right\| \leq C \sigma^{2}$ for some absolute constant C. [Hint: use the minmax theorem, which states that for $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, if f is convex in x and concave in y then we have

$$
\min _{x \in \mathcal{X}} \max _{y \in \mathcal{Y}} f(x, y)=\max _{y \in \mathcal{Y}} \min _{x \in \mathcal{X}} f(x, y)
$$

as long as \mathcal{X} and \mathcal{Y} are convex and at least one of them is compact.]
While it is not necessary, you are free to assume that p^{*} is the uniform distribution over samples $\left\{x_{1}, \ldots, x_{n}\right\}$ if you wish, in order to avoid issues with infinite-dimensional spaces.
7. Suppose we wish to approximate $\sup _{\|v\|_{4} \leq 1} v^{\top} \Sigma v$, where $\|v\|_{4}=\left(\left|v_{1}\right|^{4}+\cdots+\left|v_{d}\right|^{4}\right)^{1 / 4}$. As with the ℓ_{∞}-norm, we can relax this to the convex program

$$
\begin{align*}
\operatorname{maximize} & \langle\Sigma, M\rangle \tag{1}\\
\text { subject to } & M \succeq 0, \sum_{i} M_{i i}^{2} \leq 1 \tag{2}
\end{align*}
$$

Show that this provides a $(\pi / 2)$-approximate oracle for $\sup _{\|v\|_{4} \leq 1} v^{\top} \Sigma v$, assuming that $\Sigma \succeq 0$.

