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1 What is this course about?

Consider the process of building a statistical or machine learning model. We typically first collect training
data, then fit a model to that data, and finally use the model to make predictions on new test data.

In theory and in practice, we generally rely on the train and test data coming from the same distribution,
or at least being closely related in some way. However, there are several ways this could fail to be the case:

1. The data collection process itself could be noisy and thus not reflect the actual underlying signal we
wish to learn. For instance, there could be human error in labelling or annotation, or measurement
error due to imperfect sensors.

2. There could be distributional shift, due to changes in the world over time or because we seek to deploy
the model in some new situation (a language model trained on news articles but deployed on twitter).
There might also be noise e.g. due to a sensor failing.

Robustness concerns what we should do when the train and test distribution are not the same, for any of
the reasons above. There are two underlying perspectives influencing the choice of material in this course.
First, we are generally interested in worst-case rather than average-case robustness. For instance, when
handling data collection errors we will avoid modeling the errors as random noise and instead build procedures
that are robust to any errors within some allowed family. We prefer this because average-case robustness
requires the errors to satisfy a single, specific distribution for robustness guarantees to be meaningful, while a
goal of robustness is to handle unanticipated situations that are difficult to model precisely in advance.

Second, we will study robustness in high-dimensional settings. Many natural approaches to robustness
that work in low dimensions fail in high dimensions. For instance, the median is a robust estimate of the
mean in one dimension, but the per-coordinate median is a poor robust estimator when the dimension is large
(its error grows as

√
d in d dimensions). We will see that more sophisticated estimators can substantially

improve on this first attempt.
Complementary to robustness is the idea of model mis-specification. When the true distribution p∗ lies

within our model family, many robustness issues are less severe: we can rely on the model to extrapolate to
new settings, and we can often get well-calibrated uncertainty estimates. This motivates the second focus of
the course, nonparametric modeling, where we consider broad function classes (e.g. all smooth functions)
that are more likely to be correctly specified. Another connection between nonparametrics and robustness is
that we often want robust methods to work for any distribution within some large, infinite-dimensional class.

Overarching framework. Most robustness questions can be cast in the following way: We let p∗ denote
the true test distribution we wish to estimate, and assume that training data X1, . . . , Xn is sampled i.i.d. from
some distribution p̃ such that D(p̃, p∗) ≤ ε according to some discrepancy D. We also assume that p∗ ∈ G,
which encodes the distributional assumptions we make (e.g. that p∗ has bounded moments or tails, which

is typically necessary for robust estimation to be possible). We benchmark an estimator θ̂(X1, . . . , Xn)

according to some cost L(p∗, θ̂) (the test error). The diagram in Figure 1 illustrates this.
This framework captures both of the examples discused at the beginning. However, it will be profitable to

think about each case separately due to different emphases:
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Figure 1: Framework for studying robust learning.

1. For corrupted training data, we think of p̃ as being corrupted and p∗ as being nice.

2. For distributional shift, we think of p̃ and p∗ as both being nice (but different).

Additionally, since both p̃ and p∗ are nice for distributional shift, we should have greater ambitions and seek
to handle larger differences between train and test than in the corruption cases.

Training robustness. Designing robust estimators for training corruptions usually involves reasoning
about what the real data “might have” looked like. This could involve operations such as removing outliers,
smoothing points away from extremes, etc. Unfortunately, many intuitive algorithms in low dimensions
achieve essentially trivial bounds in high dimensions. We will show how to achieve more meaningful bounds,
focusing on three aspects:

1. good dependence of the error on the dimension,

2. good finite-sample bounds,

3. computational tractability.

Each of these aspects turns out to require new machinery and we will devote roughly equal space to each.

Distributional shift. For distributional shift, we often seek invariant features or structure that can transfer
information from the train to test distributions. We can also counteract distribution shift by training on more
diverse data. Finally, we can use model uncertainty to infer out-of-distribution error, but these inferences can
be fraught if the model is mis-specified.

Table 1: Comparison of different robust settings.

Train robustness Distributional shift
p∗ nice p∗ and p̃ both nice

undo corruptions invariant features
diverse training data

Nonparametric modeling. This brings us to nonparametric methods. The simplest way to be non-
parametric is through the model–using a rich class such as smooth functions, or neural networks. This
mitigates model mis-specification but raises new statistical challenges. Familiar phenomena such as the
central limit theorem cease to hold, and error rates are instead governed by the eigenvalue spectrum of an
infinite-dimensional kernel. Aside from the model, we can also be nonparametric at inference time; an example
is the bootstrap, which constructs confidence intervals that are more robust to model mis-specification than
classical parametric tests.
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Figure 2: Possible corruptions to be robust to. Left: data contains outliers. Middle: outputs are perturbed
(process noise); Right: inputs are perturbed (measurement error).

Summary. We will cover each of training time robustness, distribution shift, and nonparametric modeling,
drawing connections as we go. The first third will focus on training time, also building up the statistical
machinery needed to prove generalization bounds. Then, we will shift focus to model mis-specification, and to
nonparametric methods as a remedy. These including kernel regression, the bootstrap, and neural networks,
and we will both see how they mitigate model mis-specification and how to analyze their generalization
performance. Finally, we will turn to distribution shift, and see that nonparametric models are often robust
to distribution shift when trained on the right data. Training robustness will receive a largely theoretical
treatment, while for nonparametrics and distribution shift we will see a mix of theoretical and empirical
results.

2 Training Time Robustness

We will start our investigation with training time robustness. As in Figure 1, we observe samples X1, . . . , Xn

from a corrupted training distribution p̃, whose relationship to the true (test) distribution is controlled by
the constraint D(p̃, p∗) ≤ ε. We additionally constrain p∗ ∈ G, which encodes our distributional assumptions.

Note that this setting corresponds to an oblivious adversary that can only apply corruptions at the
population level (changing p∗ to p̃); we can also consider a more powerful adaptive adversary that can apply
corruptions to the samples themselves. Such an adversary is called adaptive because it is allowed to adapt
to the random draw of the samples points X1, . . . , Xn. Formally defining adaptive adversaries is somewhat
technical and we defer this to later.

Figure 2 illustrates several ways in which a training distribution could be corrupted. In the left panel,
an ε fraction of real points have been replaced by outliers. This can be modeled by the discrepancy
D(p, q) = TV(p, q), where TV is the total variation distance:

TV(p, q)
def
= sup{|p(E)− q(E)| | E is a measurable event}. (1)

If p and q both have densities then an equivalent characterization is TV(p, q) = 1
2

∫
|p(x)− q(x)|dx.

In the middle and right panels of Figure 2, either the inputs or outputs have been moved slightly. Both
operations can be modeled using Wasserstein distances (also called earthmover distances), which we will
discuss later. For now, however, we will focus on the case of handling outliers. Thus for the next several
sections our discrepancy will be the total variation distance D = TV.

2.1 Robustness to Outliers in 1 Dimension

First consider mean estimation in one dimension: we observe n data points x1, . . . , xn ∈ R drawn from p̃,
and our goal is to estimate the mean µ = Ex∼p∗ [x] of p∗. Accordingly our loss is L(p∗, θ) = |θ − µ(p∗)|.

The following histogram illustrates a possible dataset, where the height of each bar represents the number
of points with a given value:
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Are the red points outliers? Or part of the real data? Depending on the conclusion, the estimated mean
could vary substantially. Without further assumptions on the data-generating distribution p∗, we cannot rule
out either case. This brings us to an important principle:

With no assumptions on the distribution p∗, robust estimation is impossible.

In particular, we must make assumptions that are strong enough to reject sufficiently extreme points as
outliers, or else even a small fraction of such points can dominate the estimate of the mean. For simplicity,
here and in the next several sections we will assume that we directly observe the training distribution p̃ rather
than samples x1:n from p̃. This allows us to avoid analyzing finite-sample concentration, which requires
introducing additional technical tools that we will turn to in Section 2.5.

Assumption: bounded variance. One possible assumption is that p∗ has bounded variance: Ex∼p∗ [(x−
µ)2] ≤ σ2 for some parameter σ. We take G = Gcov(σ) to be the set of distributions satisfying this constraint.

Under this assumption, we can estimate µ to within error O(σ
√
ε) under TV-perturbations of size ε.

Indeed, consider the following procedure:

Algorithm 1 TrimmedMean

1: Remove the upper and lower (2ε)-quantiles from p̃ (so 4ε mass is removed in total).
2: Let p̃2ε denote the new distribution after re-normalizing, and return the mean of p̃2ε.

To analyze Algorithm 1, we will make use of a strengthened version of Chebyshev’s inequality, which we
recall here (see Section B.1 for a proof):

Lemma 2.1 (Chebyshev inequality). Suppose that p has mean µ and variance σ2. Then, PX∼p[X ≥
µ+ σ/

√
δ] ≤ δ. Moreover, if E is any event with probability at least δ, then |EX∼p[X | E]− µ| ≤ σ

√
2(1−δ)
δ .

The first part, which is the standard Chebyshev inequality, says that it is unlikely for a point to be more
than a few standard deviations away from µ. The second part says that any large population of points must
have a mean close to µ. This second property, which is called resilience, is central to robust estimation, and
will be studied in more detail in Section 2.4.

With Lemma 2.1 in hand, we can prove the following fact about Algorithm 1:

Proposition 2.2. Assume that TV(p̃, p∗) ≤ ε ≤ 1
8 . Then the output µ̂ of Algorithm 1 satisfies |µ̂−µ| ≤ 9σ

√
ε.

Proof. If TV(p̃, p∗) ≤ ε, then we can get from p∗ to p̃ by adding an ε-fraction of points (outliers) and deleting
an ε-fraction of the original points.

First note that all outliers that exceed the ε-quantile of p∗ are removed by Algorithm 1. Therefore, all
non-removed outliers lie within σ√

ε
of the mean µ by Chebyshev’s inequality.

Second, we and the adversary together remove at most a 5ε-fraction of the mass in p∗. Applying Lemma 2.1

with δ = 1− 5ε, the mean of the remaining good points lies within σ
√

10ε
1−5ε of µ.

Now let ε′ be the fraction of remaining points which are bad, and note that ε′ ≤ ε
1−4ε . The mean of all

the remaining points differs from µ by at most ε′ · σ
√

1
ε + (1− ε′) · σ

√
10ε

1−5ε , which is at most (1 +
√

10)
√
ε

1−4εσ.

This is in turn at most 9σ
√
ε assuming that ε ≤ 1

8 .

4



Figure 3: The outliers can lie at distance
√
d without being detected, skewing the mean by ε

√
d.

Optimality. The O(σ
√
ε) dependence is optimal, because the adversary can themselves apply the same

trimming procedure we do, and in general this will shift the mean of a bounded covariance distribution by
O(σ
√
ε) while keeping the covariance bounded.

Alternate assumptions. The key fact driving the proof of Proposition 2.2 is that any (1 − ε)-fraction
of the good points has mean at most O(σ

√
ε) away from the true mean due to Chebyshev’s inequality

(Lemma 2.1), which makes use of the bound σ2 on the variance. Any other bound on the deviation from
the mean would yield an analogous result. For instance, if p∗ has bounded kth moment, then the O(σ

√
ε)

in Lemma 2.1 can be improved to O(σkε
1−1/k), where (σk)k is a bound on the kth moment; in this case

Algorithm 1 will estimate µ with a correspondingly improved error of O(σkε
1−1/k).

2.2 Problems in High Dimensions

In the previous section, we saw how to robustly estimating the mean of a 1-dimensional dataset assuming the
true data had bounded variance. Our estimator worked by removing data points that are too far away from
the mean, and then returning the mean of the remaining points.

It is tempting to apply this same idea in higher dimensions—for instance, removing points that are far
away from the mean in `2-distance. Unfortunately, this incurs large error in high dimensions.

To see why, consider the following simplified example. The distribution p∗ over the true data is an isotropic
Gaussian N (µ, I), with unknown mean µ and independent variance 1 in every coordinate. In this case, the
typical distance ‖xi−µ‖2 of a sample xi from the mean µ is roughly

√
d, since there are d coordinates and xi

differs from µ by roughly 1 in every coordinate. (In fact, ‖xi − µ‖2 can be shown to concentrate around
√
d

with high probability.) This means that the outliers can lie at a distance
√
d from µ without being detected,

thus shifting the mean by Θ(ε
√
d); Figure 3 depicts this. Therefore, filtering based on `2 distance incurs an

error of at least ε
√
d. This dimension-dependent

√
d factor often renders bounds meaningless.

In fact, the situation is even worse; not only are the bad points no further from the mean than the
good points in `2-distance, they actually have the same probability density under the true data-generating
distribution N (µ, I). There is thus no procedure that measures each point in isolation and can avoid the

√
d

factor in the error.
This leads us to an important take-away: In high dimensions, outliers can substantially perturb the mean

while individually looking innocuous. To handle this, we will instead need to analyze entire populations of
outliers at once. In the next section we will do this using minimum distance functionals, which will allow us
to avoid the dimension-dependent error.

[Lecture 2]
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2.3 Minimum Distance Functionals

In the previous section we saw that simple approaches to handling outliers in high-dimensional data, such as
the trimmed mean, incur a

√
d error. We will avoid this error using minimum distance functionals, an idea

which seems to have first appeared in Donoho and Liu (1988).

Definition 2.3 (Minimum distance functional). For a family G and discrepancy D, the minimum distance
functional is

θ̂(p̃) = θ∗(q) = arg min
θ

L(q, θ), where q = arg min
q∈G

D(q, p̃). (2)

In other words, θ̂ is the parameters obtained by first projecting p̃ onto G under D, and then outputting the
optimal parameters for the resulting distribution.

An attractive property of the minimum-distance functional is that it does not depend on the perturbation
level ε. More importantly, it satisfies the following cost bound in terms of the modulus of continuity of G:

Proposition 2.4. Suppose D is a pseudometric. Then the cost L(p∗, θ̂(p̃)) of the minimum distance functional
is at most the maximum loss between any pair of distributions in G of distance at most 2ε:

m(G, 2ε,D, L) , sup
p,q∈G:D(p,q)≤2ε

L(p, θ∗(q)). (3)

The quantity m is called the modulus of continuity because, if we think of L(p, θ∗(q)) as a discrepancy
between distributions, then m is the constant of continuity between L and D when restricted to pairs of
nearby distributions in G.

Specialize again to the case D = TV and L(p∗, θ) = ‖θ − µ(p∗)‖2 (here we allow p∗ to be a distribution
over Rd rather than just R). Then the modulus is supp,q∈G:TV(p,q)≤2ε ‖µ(p)− µ(q)‖2. As a concrete example,
let G be the family of Gaussian distributions with unknown mean µ and identity covariance. For this family,
the TV distance is essentially linear in the difference in mean:

Lemma 2.5. Let N (µ, I) denote a Gaussian distribution with mean µ and identity covariance. Then

min(u/2, 1)/
√

2π ≤ TV(N (µ, I),N (µ′, I)) ≤ min(u/
√

2π, 1), (4)

where u = ‖µ− µ′‖2.

Proof. By rotational and translational symmetry, it suffices to consider the case of one-dimensional Gaussians
N (−u/2, 1) and N (u/2, 1). Then we have that

TV(N (−u/2, 1),N (u/2, 1)) =
1

2
√

2π

∫ ∞
−∞
|e−(t+u/2)2/2 − e−(t−u/2)2/2|dt (5)

(i)
=

1√
2π

∫ u/2

−u/2
e−t

2/2dt. (6)

(The equality (i) is a couple lines of algebra, but is easiest to see by drawing a graph of the two Gaussians
and cancelling out most of the probability mass.)

For the lower bound, note that e−t
2/2 ≥ 1

2 if |t| ≤ 1.

For the upper bound, similarly note that e−t
2/2 ≤ 1 for all t ∈ R, and also that the entire integral must

be at most 1 because it is the probability density of a Gaussian.

Lemma 2.5 allows us to compute the modulus for Gaussians:

Corollary 2.6. Let Ggauss be the family of isotropic Gaussians, D = TV, and L the difference in means as
above. Then m(Ggauss, ε,D, L) ≤ 2

√
2πε whenever ε ≤ 1

2
√

2π
.

In particular, by Proposition 2.4 the minimum distance functional achieves error O(ε) for Gaussian
distributions when ε ≤ 1

2
√

2π
. This improves substantially on the ε

√
d error of the trimmed mean estimator

from Section 2.2. We have achieved our goal at least for Gaussians.

6



More general families. Taking G to be Gaussians is restrictive, as it assumes that p∗ has a specific
parametric form—counter to our goal of being robust! However, the modulus m is bounded for much more
general families. As one example, we can take the distributions with bounded covariance (compare to
Proposition 2.2):

Lemma 2.7. Let Gcov(σ) be the family of distributions whose covariance matrix Σ satisfies Σ � σ2I. Then
m(Gcov(σ), ε) = O(σ

√
ε).

Proof. Let p, q ∈ Gcov(σ) such that TV(p, q) ≤ ε. This means that we can get from p to q by first deleting ε
mass from p and then adding ε new points to end up at q. Put another way, there is a distribution r that
can be reached from both p and q by deleting ε mass (and then renormalizing). In fact, this distribution is
exactly

r =
min(p, q)

1− TV(p, q)
. (7)

Since r can be obtained from both p and q by deletions, we can make use of the following multi-dimensional
analogue of Chebyshev’s inequality (Lemma 2.1):

Lemma 2.8 (Chebyshev in Rd). Suppose that p has mean µ and covariance Σ, where Σ � σ2I. Then, if E

is any event with probability at least δ, we have ‖EX∼p[X | E]− µ‖2 ≤ σ
√

2(1−δ)
δ .

As a consequence, we have ‖µ(r)− µ(p)‖2 ≤ σ
√

2ε/(1− ε) and ‖µ(r)− µ(q)‖2 ≤ σ
√

2ε/(1− ε) (since r
can be obtained from either p or q by conditioning on an event of probability 1− ε). By triangle inequality
and assuming ε ≤ 1

2 , we have ‖µ(p)− µ(q)‖2 ≤ 4σ
√
ε, as claimed.

As a consequence, the minimum distance functional robustly estimates the mean bounded covariance
distributions with error O(σ

√
ε), generalizing the 1-dimensional bound obtained by the trimmed mean.

In Lemma 2.7, the two key properties we needed were:

• The midpoint property of TV distance (i.e., that there existed an r that was a deletion of p and q).

• The bounded tails guaranteed by Chebyshev’s inequality.

If we replace bounded covariance distributions with any other family that has tails bounded in a similar way,
then the minimum distance functional will similarly yield good bounds. A general family of distributions
satisfying this property are resilience distributions, which we turn to next.

2.4 Resilience

Here we generalize Lemma 2.7 to prove that the modulus of continuity m is bounded for a general family of
distributions containins Gaussians, sub-Gaussians, bounded covariance distributions, and many others. The
main observation is that in the proof of Lemma 2.7, all we needed was that the tails of distributions in G
were bounded, in the sense that deleting an ε-fraction of the points could not substantially change the mean.
This motivates the following definition:

Definition 2.9. A distribution p over Rd is said to be (ρ, ε)-resilient (with respect to some norm ‖ · ‖) if

‖EX∼p[X | E]− EX∼p[X]‖ ≤ ρ for all events E with p(E) ≥ 1− ε. (8)

We let GTV(ρ, ε) denote the family of (ρ, ε)-resilient distributions.

We observe that Gcov(σ) ⊂ GTV(σ
√

2ε/(1− ε), ε) for all ε by Lemma 2.8; in other words, bounded

covariance distributions are resilient. We can also show that Ggauss ⊂ GTV(2ε
√

log(1/ε), ε), so Gaussians are
resilient as well.

Resilient distributions always have bounded modulus:

Theorem 2.10. The modulus of continuity m(GTV, 2ε) satisfies the bound

m(GTV(ρ, ε), 2ε) ≤ 2ρ (9)

whenever ε < 1/2.
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Proof. As in Lemma 2.7, the key idea is that any two distributions p, q that are close in TV have a midpoint

distribution r = min(p,q)
1−TV(p,q) that is a deletion of both distributions). This midpoint distribution connects the

two distributions, and it follows from the triangle inequality that the modulus of GTV. is bounded. We
illustrate this idea in Figure 4 and make it precise below.

p q
TV(p, q) ≤ ε

r = min(p,q)
1−TV(p,q)

r ≤ p
1−ε r ≤ q

1−ε

p ∈ GTV

q ∈ GTV

‖µ(p)− µ(r)‖ ≤ ρ

‖µ(q)− µ(r)‖ ≤ ρ
‖µ(p)− µ(q)‖ ≤ 2ρ

Figure 4: Midpoint distribution r helps bound the modulus for GTV.

Recall that

m(GTV(ρ, ε), 2ε) = sup
p,q∈GTV(ρ,ε):TV(p,q)≤2ε

‖µ(p)− µ(q)‖. (10)

From TV(p, q) ≤ 2ε, we know that r = min(p,q)
1−TV(p,q) can be obtained from either p and q by conditioning on

an event of probability 1 − ε. It then follows from p, q ∈ GTV(ρ, ε) that ‖µ(p) − µ(r)‖ ≤ ε and similarly
‖µ(q)− µ(r)‖ ≤ ε. Thus by the triangle inequality ‖µ(p)− µ(q)‖ ≤ 2ρ, which yields the desired result.

We have seen so far that resilient distributions have bounded modulus, and that both Gaussian and
bounded covariance distributions are resilient. The bound on the modulus for Gcov that is implied by
resilience is optimal (O(σ

√
ε)), while for Ggauss it is optimal up to log factors (O(ε

√
log(1/ε)) vs. O(ε)).

In fact, Gaussians are a special case and resilience yields an essentially optimal bound at least for most
non-parametric families of distributions. As one family of examples, consider distributions with bounded
Orlicz norm:

Definition 2.11 (Orlicz norm). A function ψ : R≥0 → R≥0 is an Orlicz function if ψ is convex, non-
decreasing, and satisfies ψ(0) = 0, ψ(x) → ∞ as x → ∞. For an Orlicz function ψ, the Orlicz norm or
ψ-norm of a random variable X is defined as

‖X‖ψ , inf

{
t > 0 : Ep

[
ψ

(
|X|
t

)]
≤ 1

}
. (11)

We let Gψ(σ) denote the family of distributions with ‖X − E[X]‖ψ ≤ σ.

As special cases, we say that a random variable X ∼ p is sub-Gaussian with parameter σ if ‖〈X −
Ep[X], v〉‖ψ2

≤ σ whenever ‖v‖2 ≤ 1, where ψ2(x) = ex
2 − 1. We define a sub-exponential random variable

similarly for the function ψ1(x) = ex − 1.
Definition 2.11 applies to distributions on R, but we can generalize this to distributions on Rd by taking

one-dimensional projections:

Definition 2.12 (Orlicz norm in Rd). For a random variable X ∈ Rd and Orlicz function ψ, we define the
d-dimensional ψ-norm as

‖X‖ψ , inf{t > 0 : ‖〈X, v〉‖ψ ≤ t whenever ‖v‖2 ≤ 1}. (12)

We let Gψ(σ) denote the distributions with bounded ψ-norm as in Definition 2.11.
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Thus a distribution has bounded ψ-norm if each of its 1-dimensional projections does. As an example,
Gcov(σ) = Gψ(σ) for ψ(x) = x2, so Orlicz norms generalize bounded covariance. It is also possible to generalize
Definition 2.12 to norms other than the `2-norm, which we will see in an exercise.

Functions with bounded Orlicz norm are resilient:

Lemma 2.13. The family Gψ(σ) is contained in GTV(2σεψ−1(1/ε), ε) for all 0 < ε < 1/2.

Proof. Without loss of generality assume E[X] = 0. For any event E with p(E) = 1− ε′ ≥ 1− ε, denote its
complement as Ec. We then have

‖EX∼p[X | E]‖2
(i)
=

ε′

1− ε′
‖EX∼p[X | Ec]‖2 (13)

=
ε′

1− ε′
sup
‖v‖2≤1

EX∼p[〈X, v〉 | Ec] (14)

(ii)

≤ ε′

1− ε′
sup
‖v‖2≤1

σψ−1(EX∼p[ψ(|〈X, v〉|/σ) | Ec]) (15)

(iii)

≤ ε′

1− ε′
sup
‖v‖2≤1

σψ−1(EX∼p[ψ(|〈X, v〉|/σ)]/ε′) (16)

(iv)

≤ ε′

1− ε′
σψ−1(1/ε′) ≤ 2εσψ−1(1/ε), (17)

as was to be shown. Here (i) is because (1− ε′)E[X | E] + ε′E[X | Ec] = 0. Meanwhile (ii) is by convexity of
ψ, (iii) is by non-negativity of ψ, and (iv) is the assumed ψ-norm bound.

As a consequence, the modulus m of Gψ(σ) is O(σεψ−1(1/ε)), and hence the minimum distance functional
estimates the mean with error O(σεψ−1(1/ε)). Note that for ψ(x) = x2 this reproduces our result for bounded
covariance. For ψ(x) = xk we get error O(σε1−1/k) when a distribution has kth moments bounded by σk.
Similarly for sub-Gaussian distributions we get error O(σε

√
log(1/ε)). We will show in an exercise that the

error bound implied by Lemma 2.13 is optimal for any Orlicz function ψ.

Further properties and dual norm perspective. Having seen several examples of resilient distributions,
we now collect some basic properties of resilience, as well as a dual perspective that is often fruitful. First,
we can make the connection between resilience and tails even more precise with the following lemma:

Lemma 2.14. For a fixed vector v, let τε(v) denote the ε-quantile of 〈x− µ, v〉: Px∼p[〈x− µ, v〉 ≥ τε(v)] = ε.
Then, p is (ρ, ε)-resilient in a norm ‖ · ‖ if and only if the ε-tail of p has bounded mean when projected onto
any dual unit vector v:

Ep[〈x− µ, v〉 | 〈x− µ, v〉 ≥ τε(v)] ≤ 1− ε
ε

ρ whenever ‖v‖∗ ≤ 1. (18)

In particular, the ε-quantile satisfies τε(v) ≤ 1−ε
ε ρ.

In other words, if we project onto any unit vector v in the dual norm, the ε-tail of x− µ must have mean
at most 1−ε

ε ρ. Lemma 2.14 is proved in Section C.
The intuition for Lemma 2.14 is the following picture, which is helpful to keep in mind more generally:
Specifically, letting µ̂ = E[X | E], if we have ‖µ̂− µ‖ = ρ, then there must be some dual norm unit vector

v such that 〈µ̂− µ, v〉 = ρ and ‖v‖∗ = 1. Moreover, for such a v, 〈µ̂− µ, v〉 will be largest when E consists of
the (1− ε)-fraction of points for which 〈X − µ, v〉 is largest. Therefore, resilience reduces to a 1-dimensional
problem along each of the dual unit vectors v.

A related result establishes that for ε = 1
2 , resilience in a norm is equivalent to having bounded first

moments in the dual norm (see Section D for a proof):

Lemma 2.15. Suppose that p is (ρ, 1
2 )-resilient in a norm ‖ · ‖, and let ‖ · ‖∗ be the dual norm. Then p has

1st moments bounded by 2ρ: Ex∼p[|〈x− µ, v〉|] ≤ 2ρ‖v‖∗ for all v ∈ Rd.
Conversely, if p has 1st moments bounded by ρ, it is (2ρ, 1

2 )-resilient.

9



µ
µ̂ dual vector v:

‖µ̂− µ‖ = 〈µ̂− µ, v〉v

Figure 5: The optimal set T discards the smallest ε|S| elements projected onto a dual unit vector v.

Recap. We saw that the error of the trimmed mean grew as
√
d in d dimensions, and introduced an

alternative estimator–the minimum distance functional–that achieves better error. Specifically, it achieves
error 2ρ for the family of (ρ, ε)-resilient distributions, which includes all distributions with bounded Orlicz
norm (including bounded covariance, bounded moments, and sub-Gaussians).

The definition of resilience is important not just as an analysis tool. Without it, we would need a different
estimator for each of the cases of bounded covariance, sub-Gaussian, etc., since the minimum distance
functional depends on the family G. Instead, we can always project onto the resilient family GTV(ρ, ε) and be
confident that this will typically yield an optimal error bound. The only complication is that projection still
depends on the parameters ρ and ε; however, we can do without knowledge of either one of the parameters as
long as we know the other.

[Lecture 3]

2.5 Concentration Inequalities

So far we have only considered the infinite-data limit where we directly observe p̃; but in general we would
like to analyze what happens in finite samples where we only observe X1, . . . , Xn sampled independently
from p̃. In order to do this, we will want to be able to formalize statements such as “if we take the average of
a large number of samples, it converges to the population mean”. In order to do this, we will need a set of
mathematical tools called concentration inequalities. A proper treatment of concentration could itself occupy
an entire course, but we will cover the ideas here that are most relevant for our later analyses. See Boucheron
et al. (2003), Boucheron et al. (2013), or Ledoux (2001) for more detailed expositions. Terence Tao also has
some well-written lectures notes.

Concentration inequalities usually involve two steps:

1. We establish concentration for a single random variable, in terms of some property of that random
variable.

2. We show that the property composes nicely for products of independent random variables.

A prototypical example (covered below) is showing that (1) a random variable has at most a 1/t2 probability
of being t standard deviations from its mean; and (2) the standard deviation of a sum of n i.i.d. random
variables is

√
n times the standard deviation of a single variable.

The simplest concentration inequality is Markov’s inequality. Consider the following question:

A slot machine has an expected pay-out of $5 (and its payout is always non-negative). What can
we say about the probability that it pays out at least $100?

We observe that the probability must be at most 0.05, since a 0.05 chance of a $100 payout would by itself
already contribute $5 to the expected value. Moreover, this bound is achievable by taking a slot machine
that pays $0 with probability 0.95 and $100 with probability 0.05. Markov’s inequality is the generalization
of this observation:
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Theorem 2.16 (Markov’s inequality). Let X be a non-negative random variable with mean µ. Then,
P[X ≥ t · µ] ≤ 1

t .

Markov’s inequality accomplishes our first goal of establishing concentration for a single random variable,
but it has two issues: first, the 1

t tail bound decays too slowly in many cases (we instead would like
exponentially decaying tails); second, Markov’s inequality doesn’t compose well and so doesn’t accomplish
our second goal.

We can address both issues by applying Markov’s inequality to some transformed random variable. For
instance, applying Markov’s inequality to the random variable Z = (X − µ)2 yields the stronger Chebyshev
inequality :

Theorem 2.17 (Chebyshev’s inequality). Let X be a real-valued random variable with mean µ and variance
σ2. Then, P[|X − µ| ≥ t · σ] ≤ 1

t2 .

Proof. Since Z = (X − µ)2 is non-negative, we have that P[Z ≥ t2 · σ2] ≤ 1
t2 by Markov’s inequality. Taking

the square-root gives P[|X − µ| ≥ t · σ] ≤ 1
t2 , as was to be shown.

Chebyshev’s inequality improves the 1/t dependence to 1/t2. But more importantly, it gives a bound in
terms of a quantity (the variance σ2) that composes nicely:

Lemma 2.18 (Additivity of variance). Let X1, . . . , Xn be pairwise independent random variables, and let
Var[X] denote the variance of X. Then,

Var[X1 + · · ·+Xn] = Var[X1] + · · ·+ Var[Xn]. (19)

Proof. It suffices by induction to prove this for two random variables. Without loss of generality assume
that both variables have mean zero. Then we have Var[X + Y ] = E[(X + Y )2] = E[X2] + E[Y 2] + 2E[XY ] =
Var[X]+Var[Y ]+2E[X]E[Y ] = Var[X]+Var[Y ], where the second-to-last step uses pairwise independence.

Chebyshev’s inequality together with Lemma 2.18 together allow us to show that an average of i.i.d.
random variables converges to its mean at a 1/

√
n rate:

Corollary 2.19. Suppose X1, . . . , Xn are drawn i.i.d. from p, where p has mean µ and variance σ2. Also
let S = 1

n (X1 + · · ·+Xn). Then, P[|S − µ|/σ ≥ t/
√
n] ≤ 1/t2.

Proof. Lemma 2.18 implies that Var[S] = σ2/n, from which the result follows by Chebyshev’s inequality.

Higher moments. Chebyshev’s inequality gives bounds in terms of the second moment of X − µ. Can we
do better by considering higher moments such as the 4th moment? Supposing that E[(X − µ)4] ≤ τ4, we do
get the analogous bound P[|X − µ| ≥ t · τ ] ≤ 1/t4. However, the 4th moment doesn’t compose as nicely as
the variance; if X and Y are two independent mean-zero random variables, then we have

E[(X + Y )4] = E[X4] + E[Y 4] + 6E[X2]E[Y 2], (20)

where the E[X2]E[Y 2] can’t be easily dealt with. It is possible to bound higher moments under composition,
for instance using the Rosenthal inequality which states that

E[|
∑
i

Xi|p] ≤ O(p)p
∑
i

E[|Xi|p] +O(
√
p)p(

∑
i

E[X2
i ])p/2 (21)

for independent random variables Xi. Note that the first term on the right-hand-side typically grows as
n · O(p)p while the second term typically grows as O(

√
pn)p.

We will typically not take the Rosenthal approach and instead work with an alternative, nicer object
called the moment generating function:

mX(λ)
def
= E[exp(λ(X − µ))]. (22)

For independent random variables, the moment generating function composes via the identity mX1+···+Xn(λ) =∏n
i=1mXi(λ). Applying Markov’s inequality to the moment generating function yields the Chernoff bound :
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Theorem 2.20 (Chernoff bound). For a random variable X with moment generating mX(λ), we have

P[X − µ ≥ t] ≤ inf
λ≥0

mX(λ)e−λt. (23)

Proof. By Markov’s inequality, P[X − µ ≥ t] = P[exp(λ(X − µ)) ≥ exp(λt)] ≤ E[exp(λ(X − µ))]/ exp(λt),
which is equal to mX(λ)e−λt by the definition of mX . Taking inf over λ yields the claimed bound.

Sub-exponential and sub-Gaussian distributions. An important special case is sub-exponential ran-
dom variables; recall these are random variables satisfying E[exp(|X − µ|/σ)] ≤ 2. For these, applying the
Chernoff bound with λ = 1/σ yields P[X − µ ≥ t] ≤ 2e−t/σ.

Another special case is sub-Gaussian random variables (those satisfying E[exp((X − µ)2/σ2)] ≤ 2). In
this case, using the inequality ab ≤ a2/4 + b2, we have

mX(λ) = E[exp(λ(X − µ))] ≤ E[exp(λ2σ2/4 + (X − µ)2/σ2)] ≤ 2 exp(λ2σ2/4). (24)

The factor of 2 is pesky and actually we can get the more convenient bound mX(λ) ≤ exp(3λ2σ2/2) (Rivasplata,
2012). Plugging this into the Chernoff bound yields P[X − µ ≥ t] ≤ exp(3λ2σ2/2− λt); minimizing over λ
gives the optimized bound P[X − µ ≥ t] ≤ exp(−t2/6σ2).

Sub-Gaussians are particularly convenient because the bound mX(λ) ≤ exp(3λ2σ2/2) composes well.
Let X1, . . . , Xn be independent sub-Gaussians with constants σ1, . . . , σn. Then we have mX1+···+Xn(λ) ≤
exp(3λ2(σ2

1 + · · ·+ σ2
n)/2). We will use this to bound the behavior of sums of bounded random variables

using Hoeffding’s inequality :1

Theorem 2.21 (Hoeffding’s inequality). Let X1, . . . , Xn be zero-mean random variables lying in [−M,M ],
and let S = 1

n (X1 + · · ·+Xn). Then, P[S ≥ t] ≤ exp(− ln(2)nt2/6M2) ≤ exp(−nt2/9M2).

Proof. First, note that each Xi is sub-Gaussian with parameter σ = M/
√

ln 2, since E[exp(X2
i /σ

2)] ≤
exp(M2/σ2) = exp(ln(2)) = 2. We thus have mXi(λ) ≤ exp(3λ2M2/2 ln 2), and so by the multiplicativity of
moment generating functions we obtain mS(λ) ≤ exp(3λ2M2/(2n ln 2)). Plugging into Chernoff’s bound and
optimizing λ as before yields P[S ≥ t] ≤ exp(− ln(2)nt2/6M2) as claimed.

Hoeffding’s inequality shows that a sum of independent random variables converges to its mean at a
1/
√
n rate, with tails that decay as fast as a Gaussian as long as each of the individual variables is bounded.

Compare this to the 1/t2 decay that we obtained earlier through Chebyshev’s inequality.

Cumulants. The moment generating function is a convenient tool because it multiplies over independent
random variables. However, its existence requires that X already have thin tails, since E[exp(λX)] must be
finite. For heavy-tailed distributions a (laborious) alternative is to use cumulants.

The cumulant function is defined as

KX(λ)
def
= logE[exp(λX)]. (25)

Note this is the log of the moment-generating function. Taking the log is convenient because now we have
additivity: KX+Y (λ) = KX(λ) +KY (λ) for independent X,Y . Cumulants are obtained by writing KX(λ) as
a power series:

KX(λ) = 1 +

∞∑
n=1

κn(X)

n!
λn. (26)

1Most of the constants presented here are suboptimal; we have focused on giving simpler proofs at the expense of sharp
constants.
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When E[X] = 0, the first few values of κn are:

κ1(X) = 0, (27)

κ2(X) = E[X2], (28)

κ3(X) = E[X3], (29)

κ4(X) = E[X4]− 3E[X2]2, (30)

κ5(X) = E[X5]− 10E[X3]E[X2], (31)

κ6(X) = E[X6]− 16E[X4]E[X2]− 10E[X3]2 + 30E[X2]3. (32)

Since K is additive, each of the κn are as well. Thus while we ran into the issue that E[(X + Y )4] 6=
E[X4] + E[Y 4], it is the case that κ4(X + Y ) = κ4(X) + κ4(Y ) as long as X and Y are independent. By
going back and forth between moments and cumulants it is possible to obtain tail bounds even if only some
of the moments exist. However, this can be arduous and Rosenthal’s inequality is probably the better route
in such cases.

[Lecture 4]

2.5.1 Applications of concentration inequalities

Having developed the machinery above, we next apply it to a few concrete problems to give a sense of how
to use it. A key lemma which we will use repeatedly is the union bound, which states that if E1, . . . , En
are events with probabilities π1, . . . , πn, then the probability of E1 ∪ · · · ∪ En is at most π1 + · · ·+ πn. A
corollary is that if n events each have probability � 1/n, then there is a large probability that none of the
events occur.

Maximum of sub-Gaussians. Suppose that X1, . . . , Xn are mean-zero sub-Gaussian with parameter σ,
and let Y = maxni=1Xi. How large is Y ? We will show the following:

Lemma 2.22. The random variable Y is O(σ
√

log(n/δ)) with probability 1− δ.

Proof. By the Chernoff bound for sub-Gaussians, we have that P[Xi ≥ σ
√

6 log(n/δ)] ≤ exp(− log(n/δ)) =

δ/n. Thus by the union bound, the probability that any of the Xi exceed σ
√

6 log(n/δ) is at most δ. Thus

with probability at least 1− δ we have Y ≤ σ
√

6 log(n/δ), as claimed.

Lemma 2.22 illustrates a typical proof strategy: We first decompose the event we care about as a union of
simpler events, then show that each individual event holds with high probability by exploiting independence.
As long as the “failure probability” of a single event is much small than the inverse of the number of events,
we obtain a meaningful bound. In fact, this strategy can be employed even for an infinite number of events
by discretizing to an “ε-net”, as we will see below:

Eigenvalue of random matrix. Let X1, . . . , Xn be independent zero-mean sub-Gaussian variables in Rd
with parameter σ, and let M = 1

n

∑n
i=1XiX

>
i . How large is ‖M‖, the maximum eigenvalue of M? We will

show:

Lemma 2.23. The maximum eigenvalue ‖M‖ is O(σ2 · (1 + d/n+ log(1/δ)/n)) with probability 1− δ.

Proof. The maximum eigenvalue can be expressed as

‖M‖ = sup
‖v‖2≤1

v>Mv = sup
‖v‖2≤1

1

n

n∑
i=1

|〈Xi, v〉|2. (33)
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The quantity inside the sup is attractive to analyze because it is an average of independent random variables.
Indeed, we have

E[exp(
n

σ2
v>Mv)] = E[exp(

n∑
i=1

|〈Xi, v〉|2/σ2)] (34)

=

n∏
i=1

E[exp(|〈Xi, v〉|2/σ2)] ≤ 2n, (35)

where the last step follows by sub-Gaussianity if 〈Xi, v〉. The Chernoff bound then gives P[v>Mv ≥ t] ≤
2n exp(−nt/σ2).

If we were to follow the same strategy as Lemma 2.22, the next step would be to union bound over v.
Unfortunately, there are infinitely many v so we cannot do this directly. Fortunately, we can get by with only
considering a large but finite number of v; we will construct a finite subset N1/4 of the unit ball such that

sup
v∈N1/4

v>Mv ≥ 1

2
sup
‖v‖2≤1

v>Mv. (36)

Our construction follows Section 5.2.2 of Vershynin (2010). Let N1/4 be a maximal set of points in the unit

ball such that ‖x− y‖2 ≥ 1/4 for all distinct x, y ∈ N1/4. We observe that |N1/4| ≤ 9d; this is because the
balls of radius 1/8 around each point in N1/4 are disjoint and contained in a ball of radius 9/8.

To establish (36), let v maximize v>Mv over ‖v‖2 ≤ 1 and let u maximize v>Mv over N1/4. Then

|v>Mv − u>Mu| = |v>M(v − u) + u>M(v − u)| (37)

≤ (‖v‖2 + ‖u‖2)‖M‖‖v − u‖2 (38)

≤ 2 · ‖M‖ · (1/4) = ‖M‖/2. (39)

Since v>Mv = ‖M‖, we obtain |‖M‖ − u>Mu| ≤ ‖M‖/2, whence u>Mu ≥ ‖M‖/2, which establishes
(36). We are now ready to apply the union bound: Recall that from the Chernoff bound on v>Mv, we had
P[v>Mv ≥ t] ≤ 2n exp(−nt/σ2), so

P[ sup
v∈N1/4

v>Mv ≥ t] ≤ 9d2n exp(−nt/σ2). (40)

Solving for this quantity to equal δ, we obtain

t =
σ2

n
· (n log(2) + d log(9) + log(1/δ)) = O(σ2 · (1 + d/n+ log(1/δ)/n)), (41)

as was to be shown.

VC dimension. Our final example will be important in the following section; it concerns how quickly
a family of events with certain geometric structure converges to its expectation. Let H be a collection of
functions f : X → {0, 1}, and define the VC dimension vc(H) to be the maximum d for which there are
points x1, . . . , xd such that (f(x1), . . . , f(xd)) can take on all 2d possible values. For instance:

• If X = R and H = {I[x ≥ τ ] | τ ∈ R} is the family of threshold functions, then vc(H) = 1.

• If X = Rd and H = {I[〈x, v〉 ≥ τ ] | v ∈ Rd, τ ∈ R} is the family of half-spaces, then vc(H) = d+ 1.

Additionally, for a point set S = {x1, . . . , xn}, let VH(S) denote the number of distinct values of (f(x1), . . . , f(xn))
and VH(n) = max{VH(S) | |S| = n}. Thus the VC dimension is exactly the maximum n such that VH(n) = 2n.

We will show the following:

Proposition 2.24. Let H be a family of functions with vc(H) = d, and let X1, . . . , Xn ∼ p be i.i.d. random
variables over X . For f : X → {0, 1}, let νn(f) = 1

n |{i | f(Xi) = 1}| and let ν(f) = p(f(X) = 1). Then

sup
f∈H
|νn(f)− ν(f)| ≤ O

(√d+ log(1/δ)

n

)
(42)

with probability 1− δ.
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We will prove a weaker result that has a d log(n) factor instead of d, and which bounds the expected
value rather than giving a probability 1 − δ bound. The log(1/δ) tail bound follows from McDiarmid’s
inequality, which is a standard result in a probability course but requires tools that would take us too far
afield. Removing the log(n) factor is slightly more involved and uses a tool called chaining.

Proof of Proposition 2.24. The importance of the VC dimension for our purposes lies in the Sauer-Shelah
lemma:

Lemma 2.25 (Sauer-Shelah). Let d = vc(H). Then VH(n) ≤
∑d
k=0

(
n
k

)
≤ 2nd.

It is tempting to union bound over the at most VH(n) distinct values of (f(X1), . . . , f(Xn)); however,
this doesn’t work because revealing X1, . . . , Xn uses up all of the randomness in the problem and we have no
randomness left from which to get a concentration inequality! We will instead have to introduce some new
randomness using a technique called symmetrization.

Regarding the expectation, let X ′1, . . . , X
′
n be independent copies of X1, . . . , Xn and let ν′n(f) denote the

version of νn(f) computed with the X ′i. Then we have

EX [sup
f∈H
|νn(f)− ν(f)|] ≤ EX,X′ [sup

f∈H
|νn(f)− ν′n(f)|] (43)

=
1

n
EX,X′ [sup

f∈H
|
n∑
i=1

f(Xi)− f(X ′i)|. (44)

We can create our new randomness by noting that since Xi and X ′i are identically distributed, f(Xi)− f(X ′i)
has the same distribution as si(f(Xi) − f(X ′i)), where si is a random sign variable that is ±1 with equal
probability. Introducing these variables and continuing the inequality, we thus have

1

n
EX,X′ [sup

f∈H
|
n∑
i=1

f(Xi)− f(X ′i)|] =
1

n
EX,X′,s[sup

f∈H
|
n∑
i=1

si(f(Xi)− f(X ′i))|]. (45)

We now have enough randomness to exploit the Sauer-Shelah lemma. If we fix X and X ′, note that the
quantities f(Xi)− f(X ′i) take values in [−1, 1] and collectively can take on at most VH(n)2 = O(n2d) values.
But for fixed X,X ′, the quantities si(f(Xi)− f(X ′i)) are independent, zero-mean, bounded random variables
and hence for fixed f we have P[

∑
i si(f(Xi)− f(X ′i)) ≥ t] ≤ exp(−t2/9n) by Hoeffding’s inequality. Union

bounding over the O(n2d) effectively distinct f , we obtain

Ps[sup
f∈H
|
∑
i

si(f(Xi)− f(X ′i))| ≥ t | X,X ′] ≤ O(n2d) exp(−t2/9n). (46)

This is small as long as t�
√
nd log n, so (45) is O(

√
d log n/n), as claimed.

A particular consequence of Proposition 2.24 is the Dvoretzky-Kiefer-Wolfowitz inequality :

Proposition 2.26 (DKW inequality). For a distribution p on R and i.d.d. samples X1, . . . , Xn ∼ p, define
the empirical cumulative density function as Fn(x) = 1

n

∑n
i=1 I[Xi ≤ x], and the population cumulative density

function as F (x) = p(X ≤ x). Then P[supx∈R |Fn(x)− F (x)| ≥ t] ≤ 2e−2nt2 .

This follows from applying Proposition 2.24 to the family of threshold functions.

[Lecture 5]

2.6 Finite-Sample Analysis

Now that we have developed tools for analyzing statistical concentration, we will use these to analyze
the finite-sample behavior of robust estimators. Recall that we previously studied the minimum distance
functional defined as

θ̂(p̃) = θ∗(q), where q = arg min
q∈G

TV(q, p̃). (47)
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This projects onto the set G under TV distance and outputs the optimal parameters for the projected
distribution.

The problem with the minimum distance functional defined above is that projection under TV usually
doesn’t make sense for finite samples! For instance, suppose that p is a Gaussian distribution and let pn and
p′n be the empirical distributions of two different sets of n samples. Then TV(pn, p) = TV(pn, p

′
n) = 1 almost

surely. This is because samples from a continuous probability distribution will almost surely be distinct,
and TV distance doesn’t give credit for being “close”—the TV distance between two point masses at 1 and
1.000001 is still 1.2

To address this issue, we will consider two solutions. The first solution is to relax the distance. Intuitively,
the issue is that the TV distance is too strong—it reports a large distance even between a population
distribution p and the finite-sample distribution pn. We will replace the distance TV with a more forgiving

distance T̃V and use the minimum distance functional corresponding to this relaxed distance. To show

that projection under T̃V still works, we will need to check that the modulus m(G, ε) is still small after we

replace TV with T̃V, and we will also need to check that the distance T̃V(p, pn) between p and its empirical
distribution is small with high probability. We do this below in Section 2.6.1.

An alternative to relaxing the distance from TV to T̃V is to expand the destination set from G to some
M⊃ G, such that even though p is not close to the empirical distribution pn, some element of M is close to
pn. Another advantage to expanding the destination set is that projecting onto G may not be computationally
tractable, while projecting onto some larger set M can sometimes be done efficiently. We will see how
to statistically analyze this modified projection algorithm in Section 2.6.2, and study the computational
feasibility of projecting onto a set M starting in Section 2.7.

2.6.1 Relaxing the Distance

Here we instantiate the first solution of replacing TV with some T̃V for the projection algorithm. The

following lemma shows that properties we need T̃V to satisfy:

Lemma 2.27. Suppose that T̃V is a (pseudo-)metric such that T̃V(p, q) ≤ TV(p, q) for all p, q. If we assume

that p∗ ∈ G and TV(p∗, p̃) ≤ ε, then the error of the minimum distance functional (2) with D = T̃V is at

most m(G, 2ε′, T̃V, L), where ε′ = ε+ T̃V(p̃, p̃n).

Proof. By Proposition 2.4 we already know that the error is bounded by m(G, 2T̃V(p∗, p̃n), T̃V, L). Since

T̃V is a pseudometric, by the triangle inequality we have T̃V(p∗, p̃n) ≤ T̃V(p∗, p̃) + T̃V(p̃, p̃n). Finally,

T̃V(p∗, p̃) ≤ TV(p∗, p̃) by assumption.

Lemma 2.27 shows that we need T̃V to satisfy two properties: T̃V(p̃, p̃n) should be small, and the modulus

m(G, ε, T̃V) should not be too much larger than m(G, ε,TV).

For mean estimation (where recall L(p, θ) = ‖θ − µ(p)‖2), we will use the following T̃V:

T̃VH(p, q)
def
= sup

f∈H,τ∈R
|PX∼p[f(X) ≥ τ ]− PX∼q[f(X) ≥ τ ]|. (48)

(Note the similarity to the distance in Proposition 2.24; we will make use of this later.) We will make the

particular choice H = Hlin, where Hlin
def
= {x 7→ 〈v, x〉 | v ∈ Rd}.

First note that T̃VH is indeed upper-bounded by TV, since TV(p, q) = supE |p(E)−q(E)| is the supremum
over all events E, and (48) takes a supremum over a subset of events. The intuition for taking the particular
family H is that linear projections of our data contain all information needed to recover the mean, so perhaps
it is enough for distributions to be close only under these projections.

Bounding the modulus. To formalize this intuition, we prove the following mean crossing lemma:

Lemma 2.28. Suppose that p and q are two distributions such that T̃VH(p, q) ≤ ε. Then for any f ∈ H,
there are distributions rp ≤ p

1−ε and rq ≤ q
1−ε such that EX∼rp [f(X)] ≥ EY∼rq [f(Y )].

2We will later study the W1 distance, which does give credit for being close.
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Proof. We will prove the stronger statement that f(X) under rp stochastically dominates f(Y ) under rq.
Starting from p, q, we delete ε probability mass corresponding to the smallest points of f(X) in p to get rp,

and delete ε probability mass corresponding to the largest points f(Y ) in q to get rq. Since T̃VH(p, q) ≤ ε we
have

sup
τ∈R
|PX∼p(f(X) ≥ τ)− PY∼q(f(Y ) ≥ τ)| ≤ ε, (49)

which implies that Prp(f(X) ≥ τ) ≥ Prq (f(Y ) ≥ τ) for all t ∈ R. Hence, rp stochastically dominates rq and
Erp [f(X)] ≥ Erq [(Y )].

Mean crossing lemmas such as Lemma 2.28 help us bound the modulus of relaxed distances for the family
of resilient distributions. In this case we have the following corollary:

Corollary 2.29. For the family GTV(ρ, ε) of (ρ, ε)-resilient distributions and L(p, θ) = ‖θ− µ(p)‖2, we have

m(GTV(ρ, ε), ε, T̃VHlin
) ≤ 2ρ. (50)

Compare to Theorem 2.10 where we showed that m(GTV, ε,TV) ≤ ρ. Thus as long as Theorem 2.10 is

tight, relaxing from TV to T̃VHlin
doesn’t increase the modulus at all!

Proof of Corollary 2.29. Let p, q ∈ GTV such that T̃V(p, q) ≤ ε. Take v = arg max‖v‖2=1 v
>(Ep[X]− Eq[X]),

hence Ep[v>X]−Eq[v>X] = ‖Ep[X]−Eq[X]‖2. It follows from Lemma 2.28 that there exist rp ≤ p
1−ε , rq ≤

q
1−ε

such that

Erp [v>X] ≤ Erq [v>X]. (51)

Furthermore, from p, q ∈ GTV(ρ, ε), we have

Ep[v>X]− Erp [v>X] ≤ ρ, (52)

Erq [v>X]− Eq[v>X] ≤ ρ. (53)

Then,

‖Ep[X]− Eq[X]‖2 = Ep[v>X]− Eq[v>X] (54)

= Ep[v>X]− Erp [v>X]︸ ︷︷ ︸
≤ρ

+Erp [v>X]− Erq [v>X]︸ ︷︷ ︸
≤0

+Erq [v>X]− Eq[v>X]︸ ︷︷ ︸
≤ρ

(55)

≤ 2ρ, (56)

which shows the modulus is small as claimed.

µp1 µrp1µrp2 µp2

Figure 6: Illustration of mean cross lemma. For any distributions p1, p2 that are close under T̃V, we can
truncate the ε-tails of each distribution to make their means cross.
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Bounding the distance to the empirical distribution. Now that we have bounded the modulus, it

remains to bound the distance T̃V(p̃, p̃n). Note that T̃V(p̃, p̃n) is exactly the quantity bounded in equation

(42) of Proposition 2.24; we thus have that T̃VH(p̃, p̃n) ≤ O
(√ vc(H)+log(1/δ)

n

)
with probability 1− δ. Here

vc(H) is the VC dimension of the family of threshold functions {x 7→ I[f(x) ≥ τ ] | f ∈ H, τ ∈ R}. So, for
H = Hlin all we need to do is bound the VC dimension of the family of halfspace functions on Rd.

We claimed earlier that this VC dimension is d+ 1, but we prove it here for completeness. We will show
that no set of points x1, . . . , xd+2 ∈ Rd cannot be shattered into all 2d+2 possible subsets using halfspaces.
For any such points we can find multipliers a1, . . . , ad+2 ∈ R such that

d+2∑
i=1

aixi = 0,

d+2∑
i=1

ai = 0. (57)

Let S+ = {i | ai > 0} and S− = {i | ai < 0}. We will show that the convex hulls of S+ and S− intersect.
Consequently, there is no vector v and threshold τ such that 〈xi, v〉 ≥ τ iff i ∈ S+. (This is because both a
halfspace and its complement are convex, so if we let Hv,τ denote the half-space, it is impossible to have
S+ ⊂ Hv,τ , S− ⊂ Hc

v,τ , and conv(S+) ∩ conv(S−) 6= ∅.)
To prove that the convex hulls intersect, note that we have

1

A

∑
i∈S+

aixi =
1

A

∑
i∈S−

(−ai)xi, (58)

where A =
∑
i∈S+

ai =
∑
i∈S−(−ai). But the left-hand-side lies in conv(S+) while the right-hand-side lies in

conv(S−), so the convex hulls do indeed intersect.
This shows that x1, . . . , xd+2 cannot be shattered, so vc(Hlin) ≤ d+1. Combining this with Proposition 2.24,

we obtain:

Proposition 2.30. With probability 1− δ, we have T̃VHlin
(p̃, p̃n) ≤ O

(√d+log(1/δ)
n

)
.

Combining this with Corollary 2.29 and Lemma 2.27, we see that projecting onto GTV(ρ, 2ε′) under T̃VHlin

performs well in finite samples, for ε′ = ε+O(
√
d/n). For instance, if G has bounded covariance we achieve

error O(
√
ε+

√
d/n); if G is sub-Gaussian we achieve error Õ(ε+

√
d/n); and in general if G has bounded

ψ-norm we achieve error O
((
ε+

√
d/n

)
ψ−1

(
1

ε+
√
d/n

))
≤ O((ε+

√
d/n)ψ−1(1/ε)).

This analysis is slightly sub-optimal as the best lower bound we are aware of is Ω(εψ−1(1/ε) +
√
d/n), i.e.

the ψ−1(1/ε) coefficient in the dependence on n shouldn’t be there. However, it is accurate as long as ε is
large compared to

√
d/n.

Connection to Tukey median. A classical robust estimator for the mean is the Tukey median, which
solves the problem

min
µ

max
v∈Rd

|PX∼p̃n [〈X, v〉 ≥ 〈µ, v〉]− 1
2 | (59)

[Note: this definition is slightly wrong as it does not behave gracefully when there is a point mass at µ.]

It is instructive to compare this to projection under T̃V, which corresponds to

min
q∈G

max
v∈Rd,τ∈R

|PX∼p̃n [〈X, v〉 ≥ τ ]− PX∼q[〈X, v〉 ≥ τ ]|. (60)

The differences are: (1) the Tukey median only minimizes over the mean rather than the full distribution
q; (2) it only considers the threshold 〈µ, v〉 rather than all thresholds τ ; it assumes that the median of any
one-dimensional projection 〈X, v〉 is equal to its mean (which is why we subtract 1

2 in (59)). Distributions
satisfying this final property are said to be unskewed.

For unskewed distributions with “sufficient probability mass” near the mean, the Tukey median yields a
robust estimator. In fact, it can be robust even if the true distribution has heavy tails (and hence is not
resilient), by virtue of leveraging the unskewed property. We will explore this in an exercise.

[Lectures 6-7]
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2.6.2 Expanding the Set

In Section 2.6.1 we saw how to resolve the issue with TV projection by relaxing to a weaker distance T̃V.
We will now study an alternate approach, based on expanding the destination set G to a larger set M. For
this approach we will need to reference the “true empirical distribution” p∗n. What we mean by this is the
following: Whenever TV(p∗, p̃) ≤ ε, we know that p∗ and p̃ are identical except for some event E of probability
ε. Therefore we can sample from p̃ as follows:

1. Draw a sample from X ∼ p∗.

2. Check if E holds; if it does, replace X with a sample from the conditional distribution p̃|E .

3. Otherwise leave X as-is.

Thus we can interpret a sample from p̃ as having a 1 − ε chance of being “from” p∗. More generally, we
can construct the empirical distribution p̃n by first constructing the empirical distribution p∗n coming from
p∗, then replacing Binom(n, ε) of the points with samples from p̃|E . Formally, we have created a coupling

between the random variables p∗n and p̃n such that TV(p∗n, p̃n) is distributed as 1
nBinom(n, ε).

Let us return to expanding the set from G to M. For this to work, we need three properties to hold:

• M is large enough: minq∈M TV(q, p∗n) is small with high probability.

• The empirical loss L(p∗n, θ) is a good approximation to the population loss L(p∗, θ).

• The modulus is still bounded: minp,q∈M:TV(p,q)≤2ε L(p, θ∗(q)) is small.

In fact, it suffices for M to satisfy a weaker property; we only need the “generalized modulus” to be small
relative to some G′ ⊂M:

Proposition 2.31. For a set G′ ⊂M, define the generalized modulus of continuity as

m(G′,M, 2ε)
def
= min

p∈G′,q∈M:TV(p,q)≤2ε
L(p, θ∗(q)). (61)

Assume that the true empirical distribution p∗n lies in G′ with probability 1− δ. Then the minimum distance

functional projecting under TV onto M has empirical error L(p∗n, θ̂) at most m(G′,M, 2ε′) with probability at
least 1− δ − P[Binom(ε, n) ≥ ε′n].

Proof. Let ε′ = TV(p∗n, p̃n), which is Binom(ε, n)-distributed. If p∗n lies in G′, then since G′ ⊂ M we know
that p̃n has distance at most ε′ fromM, and so the projected distribution q satisfies TV(q, p̃n) ≤ ε′ and hence

TV(q, p∗n) ≤ 2ε′. It follows from the definition that L(p∗n, θ̂) = L(p∗n, θ
∗(q)) ≤ m(G′,M, 2ε′).

A useful bound on the binomial tail is that P[Binom(ε, n) ≥ 2εn] ≤ exp(−εn/3). In particular the empirical
error is at most m(G′,M, 4ε) with probability at least 1− δ − exp(−εn/3).

Application: bounded kth moments. First suppose that the distribution p∗ has bounded kth moments,
i.e. Gmom,k(σ) = {p | ‖p‖ψ ≤ σ}, where ψ(x) = xk. When k > 2, the empirical distribution p∗n will not have
bouned kth moments until n ≥ Ω(dk/2). This is because if we take a single sample x1 ∼ p and let v be a
unit vector in the direction of x1 − µ, then Ex∼p∗n [〈x − µ, v〉k] ≥ 1

n‖x1 − µ‖k2 ' dk/2/n, since the norm of

‖x1 − µ‖2 is typically
√
d.

Consequently, it is necessary to expand the set and we will choose G′ =M = GTV(ρ, ε) for ρ = O(σε1−1/k)
to be the set of resilience distributions with appropriate parameters ρ and ε. We already know that the
modulus of M is bounded by O(σε1−1/k), so the hard part is showing that the empirical distribution p∗n lies
in M with high probability.

As noted above, we cannot hope to prove that p∗n has bounded moments except when n = Ω(dk/2), which
is too large. We will instead show that certain truncated moments of p∗n are bounded as soon as n = Ω(d),
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and that these truncated moments suffice to show resilience. Specifically, if ψ(x) = xk is the Orlicz function
for the kth moments, we will define the truncated function

ψ̃(x) =

{
xk : x ≤ x0

kxk−1
0 (x− x0) + xk0 : x > x0

(62)

In other words, ψ̃ is equal to ψ for x ≤ x0, and is the best linear lower bound to ψ for x > x0. Note that ψ̃ is
L-Lipschitz for L = kxk−1

0 . We will eventually take x0 = (kk−1ε)−1/k and hence L = (1/ε)(k−1)/k. Using a
symmetrization argument, we will bound the truncated sup‖v‖2≤1 Ep∗n [ψ̃(|〈x− µ, v〉|/σ)].

Proposition 2.32. Let X1, . . . , Xn ∼ p∗, where p∗ ∈ Gmom,k(σ). Then,

EX1,...,Xn∼p∗

[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

ψ̃

(
|〈Xi − µ, v〉|

σ

)
− U(v)

∣∣∣∣k] ≤ O(2L

√
dk

n

)k
, (63)

where L = kxk−1
0 and U(v) is a function satisfying U(v) ≤ 1 for all v.

Before proving Proposition 2.32, let us interpret its significance. Take x0 = (kk−1ε)−1/k and hence L =
ε1−1/k. Take n large enough so that the right-hand-side of (63) is at most 1, which requires n ≥ Ω(kd/ε2−2/k).
We then obtain a high-probability bound on the ψ̃-norm of p∗n, i.e. the ψ̃-norm is at most O(δ−1/k) with
probability 1 − δ. This implies that p∗n is resilient with parameter ρ = σεψ̃−1(O(δ−1/k)/ε) = 2σε1−1/k. A
useful bound on ψ̃−1 is ψ̃(−1)(z) ≤ x0 + z/L, and since x0 ≤ (1/ε)−1/k and L = (1/ε)(k−1)/k in our case, we
have

ρ ≤ O(σε1−1/kδ−1/k) with probability 1− δ.

This matches the population-bound of O(σε1−1/k), and only requires kd/ε2−2/k samples, in contrast to the
d/ε2 samples required before. Indeed, this sample complexity dependence is optimal (other than the factor of
k); the only drawback is that we do not get exponential tails (we instead obtain tails of δ−1/k, which is worse
than the

√
log(1/δ) from before).

Now we discuss some ideas that are needed in the proof. We would like to somehow exploit the fact that ψ̃
is L-Lipschitz to prove concentration. We can do so with the following keystone result in probability theory:

Theorem 2.33 (Ledoux-Talagrand Contraction). Let φ : R → R be an L-Lipschitz function such that
φ(0) = 0. Then for any convex, increasing function g and Rademacher variables ε1:n ∼ {±1}, we have

Eε1:n [g(sup
t∈T

n∑
i=1

εiφ(ti))] ≤ Eε1:n [g(L sup
t∈T

n∑
i=1

εiti)]. (64)

Let us interpret this result. We should think of the ti as a quantity such as 〈xi − µ, v〉, where abstracting
to ti yields generality and notational simplicity. Theorem 2.33 says that if we let Y = supt∈T

∑
i εiφ(ti) and

Z = L supt∈T
∑
i εiti, then E[g(Y )] ≤ E[g(Z)] for all convex increasing functions g. When this holds we say

that Y stochastically dominates Z in second order ; intuitively, it is equivalent to saying that Z has larger
mean than Y and greater variation around its mean. For distributions supported on just two points, we can
formalize this as follows:

Lemma 2.34 (Two-point stochastic dominance). Let Y take values y1 and y2 with probability 1
2 , and Z take

values z1 and z2 with probability 1
2 . Then Z stochastically dominates Y (in second order) if and only if

z1 + z2

2
≥ y1 + y2

2
and max(z1, z2) ≥ max(y1, y2). (65)

Proof. Without loss of generality assume z2 ≥ z1 and y2 ≥ y1. We want to show that E[g(Y )] ≤ E[g(Z)] for
all convex increasing g if and only if (65) holds. We first establish necessity of (65). Take g(x) = x, then we
require E[Y ] ≤ E[Z], which is the first condition in (65). Taking g(x) = max(x− z2, 0) yields E[g(Z)] = 0
and E[g(Y )] ≥ 1

2 max(y2 − z2, 0), so E[g(Y )] ≤ E[g(Z)] implies that y2 ≤ z2, which is the second condition in
(65).
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We next establish sufficiency, by conjuring up appropriate weights for Jensen’s inequality. We have

y2 − z1

z2 − z1
g(z2) +

z2 − y2

z2 − z1
g(z1) ≥ g

(z2(y2 − z1) + z1(z2 − y2)

z2 − z1

)
= g(y2), (66)

z2 − y2

z2 − z1
g(z2) +

y2 − z1

z2 − z1
g(z1) ≥ g

(z2(z2 − y2) + z1(y2 − z1)

z2 − z1

)
= g(z1 + z2 − y2) ≥ g(y1). (67)

Here the first two inequalities are Jensen while the last is by the first condition in (65) together with the
monotonicity of g. Adding these together yields g(z2) + g(z1) ≥ g(y2) + g(y1), or E[g(Z)] ≥ E[g(Y )], as
desired. We need only check that the weights y2−z1

z2−z1 and z2−y2
z2−z1 are positive. The second weight is positive

by the assumption z2 ≥ y2. The first weight could be negative if y2 < z1, meaning that both y1 and y2 are
smaller than both z1 and z2. But in this case, the inequality E[g(Y )] ≤ E[g(Z)] trivially holds by monotonicity
of g. This completes the proof.

We are now ready to prove Theorem 2.33.

Proof of Theorem 2.33. Without loss of generality we may take L = 1. Our strategy will be to iteratively
apply an inequality for a single εi to replace all the φ(ti) with ti one-by-one. The inequality for a single εi is
the following:

Lemma 2.35. For any 1-Lipschitz function φ with φ(0) = 0, any collection T of ordered pairs (a, b), and
any convex increasing function g, we have

Eε∼{−1,+1}[g( sup
(a,b)∈T

a+ εφ(b))] ≤ Eε∼{−1,+1}[g( sup
(a,b)∈T

a+ εb)]. (68)

To prove this, let (a+, b+) attain the sup of a+ εφ(b) for ε = +1, and (a−, b−) attain the sup for ε = −1.
We will check the conditions of Lemma 2.34 for

y1 = a− − φ(b−), (69)

y2 = a+ + φ(b+), (70)

z1 = max(a− − b−, a+ − b+), (71)

z2 = max(a− + b−, a+ + b+). (72)

(Note that z1 and z2 are lower-bounds on the right-hand-side sup for ε = −1,+1 respectively.)
First we need max(y1, y2) ≤ max(z1, z2). But max(z1, z2) = max(a− + |b−|, a+ + |b+|) ≥ max(a− −

φ(b−), a+ + φ(b+)) = max(y1, y2). Here the inequality follows since φ(b) ≤ |b| since φ is Lipschitz and
φ(0) = 0.

Second we need y1+y2
2 ≤ z1+z2

2 . We have z1 + z2 ≥ max((a− − b−) + (a+ + b+), (a− + b−) + (a+ − b+)) =

a+ + a− + |b+ − b−|, so it suffices to show that a++a−+|b+−b−|
2 ≥ a++a−+φ(b+)−φ(b−)

2 . This exactly reduces to
φ(b+)− φ(b−) ≤ |b+ − b−|, which again follows since φ is Lipschitz. This completes the proof of the lemma.

Now to prove the general proposition we observe that if g(x) is convex in x, so is g(x+ t) for any t. We
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then proceed by iteratively applying Lemma 2.35:

Eε1:n [g(sup
t∈T

n∑
i=1

εiφ(ti))] = Eε1:n−1 [Eεn [g(sup
t∈T

n−1∑
i=1

εiφ(ti)︸ ︷︷ ︸
a

+εn φ(tn)︸ ︷︷ ︸
φ(b)

) | ε1:n−1]] (73)

≤ Eε1:n−1
[Eεn [g(sup

t∈T

n−1∑
i=1

εiφ(ti) + εntn) | ε1:n−1]] (74)

= Eε1:n [[g(sup
t∈T

n−1∑
i=1

εiφ(ti) + εntn)] (75)

... (76)

≤ Eε1:n [g(sup
t∈T

ε1φ(t1) +

n∑
i=2

εiti)] (77)

≤ Eε1:n [g(sup
t∈T

n∑
i=1

εiti)], (78)

which completes the proof.

Let us return now to bounding the truncated moments in Proposition 2.32.

Proof of Proposition 2.32. We start with a symmetrization argument. Let µψ̃ = EX∼p∗ [ψ̃(|〈X − µ, v〉|/σ)],
and note that µψ̃ ≤ µψ ≤ 1. Now, by symmetrization we have

EX1,...,Xn∼p∗

[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

ψ̃

(
|〈Xi − µ, v〉|

σ

)
− µψ̃

∣∣∣∣k] (79)

≤ EX,X′∼p,ε
[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εi

(
ψ̃
( |〈Xi − µ, v〉|

σ

)
− ψ̃

( |〈X ′i − µ, v〉|
σ

))∣∣∣∣k] (80)

≤ 2kEX∼p,ε
[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εiψ̃
( |〈Xi − µ, v〉|

σ

)∣∣∣∣k]. (81)

Here the first inequality adds and subtracts the mean, the second applies symmetrization, while the third
uses the fact that optimizing a single v for both X and X ′ is smaller than optimizing v separately for each
(and that the expectations of the expressions with X and X ′ are equal to each other in that case).

We now apply Ledoux-Talagrand contraction. Invoking Theorem 2.33 with g(x) = |x|k, φ(x) = ψ̃(|x|)
and ti = 〈Xi − µ, v〉|/σ, we obtain

EX∼p,ε
[∣∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εiψ̃
( |〈Xi − µ, v〉|

σ

)∣∣∣∣k] ≤ (L/σ)kEX∼p,ε
[∣∣∣ sup
‖v‖2≤1

1

n

n∑
i=1

εi〈Xi − µ, v〉
∣∣∣k] (82)

= (L/σ)kEX∼p,ε
[∥∥∥ 1

n

n∑
i=1

εi(Xi − µ)
∥∥∥k

2

]
. (83)

We are thus finally left to bound EX∼p,ε[‖
∑n
i=1 εi(Xi−µ)‖k]. Here we will use Khintchine’s inequality, which

says that

Ak‖z‖2 ≤ Eε[|
∑
i

εizi|k]1/k ≤ Bk‖z‖2, (84)

where Ak is Θ(1) and Bk is Θ(
√
k) for k ≥ 1. Applying this in our case, we obtain

EX,ε[‖
n∑
i=1

εi(Xi − µ)‖k2 ] ≤ O(1)kEX,ε,ε′ [|
n∑
i=1

εi〈Xi − µ, ε′〉|k]. (85)
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Next apply Rosenthal’s inequality (Eq. 21), which yields that

EX,ε[
n∑
i=1

εi〈Xi − µ, ε′〉|k | ε′] ≤ O(k)k
n∑
i=1

EX,ε[|〈Xi − µ, ε′〉|k | ε′] +O(
√
k)k(

n∑
i=1

E[〈Xi − µ, ε′〉|2])k/2 (86)

≤ O(k)k · nσk‖ε′‖k2 +O(
√
kn)kσk‖ε′‖k2 (87)

= O(σk
√
d)kn+O(σ

√
kd)knk/2, (88)

where the last step uses that ‖ε′‖2 =
√
d and the second-to-last step uses the bounded moments of X. As

long as n� kk/(k−2) the latter term dominates and hence plugging back into we conclude that

EX,ε[‖
n∑
i=1

εi(Xi − µ)‖k2 ]1/k = O(σ
√
kdn). (89)

Thus bounds the symmetrized truncated moments in (82-83) by O(L
√
kd/n)k, and plugging back into (81)

completes the proof.

Application: isotropic Gaussians. Next take Ggauss to be the family of isotropic Gaussians N (µ, I). We
saw earlier that the modulus m(Ggauss, ε) was O(ε) for the mean estimation loss L(p, θ) = ‖θ − µ(p)‖2. Thus
projecting onto Ggauss yields error O(ε) for mean estimation in the limit of infinite samples, but doesn’t work
for finite samples since the TV distance to Ggauss will always be 1.

Instead we will project onto the set Gcov(σ) = {p | ‖E[(X − µ)(X − µ)>]‖ ≤ σ2}, for σ2 = O(1 + d/n+
log(1/δ)/n). We already saw in Lemma 2.23 that when p∗ is (sub-)Gaussian the empirical distribution p∗n
lies within this set. But the modulus of Gcov only decays as O(

√
ε), which is worse than the O(ε) dependence

that we had in infinite samples! How can we resolve this issue?
We will let Giso be the family of distributions whose covariance is not only bounded, but close to the

identity, and where moreover this holds for all (1− ε)-subsets:

Giso(σ1, σ2)
def
= {p | ‖Er[X − µ]‖2 ≤ σ1 and ‖Er[(X − µ)(X − µ)> − I‖ ≤ (σ2)2, whenever r ≤ p

1− ε
}. (90)

The following improvement on Lemma 2.23 implies that p∗n ∈ Giso(σ1, σ2) for σ1 = O(ε
√

log(1/ε)) and

σ2 = O(
√
ε log(1/ε)). [Note: the lemma below is wrong as stated. To be fixed.]

Lemma 2.36. Suppose that X1, . . . , Xn are drawn independently from a sub-Gaussian distribution with
sub-Gaussian parameter σ, mean 0, and identity covariance. Then, with probability 1− δ we have∥∥∥ 1

|S|

n∑
i∈S

XiX
>
i − I

∥∥∥ ≤ O(σ2 ·
(
ε log(1/ε) +

d+ log(1/δ)

n

))
, and (91)

∥∥∥ 1

|S|

n∑
i∈S

Xi

∥∥∥
2
≤ O

(
σ ·
(
ε
√

log(1/ε) +

√
d+ log(1/δ)

n

))
(92)

for all subsets S ⊆ {1, . . . , n} with |S| ≥ (1 − ε)n. In particular, if n � d/(ε2 log(1/ε)) then δ ≤
exp(−cεn log(1/ε)) for some constant c.

We will return to the proof of Lemma 2.36 later. For now, note that this means that p∗n ∈ G′ for
G′ = Giso(O(ε

√
log(1/ε),O(

√
ε log(1/ε))), at least for large enough n. Furthermore, G′ ⊂ M for M =

Gcov(1 +O(ε log(1/ε))).
Now we bound the generalized modulus of continuity:

Lemma 2.37. Suppose that p ∈ Giso(σ1, σ2) and q ∈ Gcov(
√

1 + σ2
2), and furthermore TV(p, q) ≤ ε. Then

‖µ(p)− µ(q)‖2 ≤ O(σ1 + σ2
√
ε+ ε).
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Proof. Take the midpoint distribution r = min(p,q)
1−ε , and write q = (1− ε)r+ εq′. We will bound ‖µ(r)−µ(q)‖2

(note that ‖µ(r)− µ(p)‖2 is already bounded since p ∈ Giso). We have that

Covq[X] = (1− ε)Er[(X − µq)(X − µq)>] + εEq′ [(X − µq)(X − µq)>] (93)

= (1− ε)(Covr[X] + (µq − µr)(µq − µr)>) + εEq′ [(X − µq)(X − µ)q)>] (94)

� (1− ε)(Covr[X] + (µq − µr)(µq − µr)>) + ε(µq − µq′)(µq − µq′)>. (95)

A computation yields µq − µq′ = (1−ε)2
ε (µq − µr). Plugging this into (95) and simplifying, we obtain that

Covq[X] � (1− ε)(Covr[X] + (1/ε)(µq − µr)(µq − µr)>). (96)

Now since Covr[X] � (1− σ2
2)I, we have ‖Covq[X]‖ ≥ (1− ε)(1− σ2

2) + (1/ε)‖µq − µr‖22. But by assumption
‖Covq[X]‖ ≤ 1+σ2

2 . Combining these yields that ‖µr−µq‖22 ≤ ε(2σ2
2+ε+εσ2

2), and so ‖µr−µq‖2 ≤ O(ε+σ2
√
ε),

which gives the desired result.

In conclusion, projecting onto Gcov(1 +O(ε log(1/ε))) under TV distance gives a robust mean estimator
for isotropic Gaussians, which achieves error O(ε

√
log(1/ε)). This is slightly worse than the optimal O(ε)

bound but improves over the näıve analysis that only gave O(
√
ε).

Another advantage of projecting onto Gcov is that, as we will see in Section 2.7, this projection can be
done computationally efficiently.

Proof of Lemma 2.36. TBD

[Lecture 8]

2.7 Efficient Algorithms

We now turn our attention to efficient algorithms. Recall that previously we considered minimum distance

functionals projecting onto sets G andM under distances TV and T̃V. Here we will show how to approximately
project onto the set Gcov(σ), the family of bounded covariance distributions, under TV distance. The basic
idea is to write down a (non-convex) optimization problem that tries to find the projection, and then show
that the cost landscape of this optimization is nice enough that all local minima are within a constant factor
of the global minimum.

To study efficient computation we need a way of representing the distributions p̃ and p∗. To do this we
will suppose that p̃ is the empirical distribution over n points x1, . . . , xn, while p∗ is the empirical distribution
over some subset S of these points with |S| ≥ (1− ε)n. Thus in particular p∗ is an ε-deletion of p̃.

Before we assumed that TV(p∗, p̃) ≤ ε, but taking p′ = min(p∗,p̃)
1−TV(p∗,p̃) , we have p′ ≤ p̃

1−ε and ‖Covp′ [X]‖ ≤
σ2

1−ε ≤ 2σ2 whenever ‖Covp∗ [X]‖ ≤ σ2. Therefore, taking p∗ ≤ p̃
1−ε is equivalent to the TV corruption model

from before for our present purposes.
We will construct an efficient algorithm that, given p̃, outputs a distribution q such that TV(q, p∗) ≤ O(ε)

and ‖Covq[X]‖2 ≤ O(σ2). This is similar to the minimum distance functional, in that it finds a distribution
close to p∗ with bounded covariance; the main difference is that q need not be the projection of p̃ onto Gcov,
and also the covariance of q is bounded by O(σ2) instead of σ2. However, the modulus of continuity bound
from before says that any distribution q that is near p∗ and has bounded covariance will approximate the
mean of p∗. Specifically, we have (by tracking the constants in our previous midpoint argument):

Lemma 2.38. If TV(p, q) ≤ ε, then ‖µ(p)− µ(q)‖2 ≤
√
‖Σq‖ε
1−ε +

√
‖Σp‖ε
1−ε .

We will prove Lemma 2.38 at the end of the section.
The main result of this section is the following:

Proposition 2.39. Suppose p̃ and p∗ are empirical distributions as above with p∗ ≤ p̃/(1− ε), and further
suppose that ‖Covp∗ [X]‖ ≤ σ2 and ε < 1/3. Then given p̃ (but not p∗), there is an algorithm with runtime

poly(n, d) that outputs a q with TV(p∗, q) ≤ ε
1−ε and ‖Covq[X]‖ ≤

(
1−ε
1−3ε

)2
σ2. In addition, ‖µ(q)−µ(p∗)‖2 ≤√

4ε(1−2ε)

1−3ε σ.
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Note that the bound on ‖µ(p∗) − µ(q)‖2 follows directly from the modulus bound on Gcov(σ) together
with the property TV(p∗, q) ≤ ε

1−ε .
The algorithm, MinCovL2, underlying Proposition 2.39 is given below; it maintains a weighted distribution

q, which places weight qi on point xi. It then computes the weighted mean and covariance, picking the
weights that minimize the norm of the covariance.

Algorithm 2 MinCovL2

1: Input: x1, . . . , xn ∈ Rd.
2: Find any stationary point q of the optimization problem:

min
q

sup
‖v‖2≤1

n∑
i=1

qi〈v, xi − µq〉2, (97)

s.t. µq =
∑
i

qixi,

q ≥ 0,
∑
i

qi = 1, qi ≤
1

(1− ε)n

3: Output µ̂q, the empirical mean for the stationary point q.

The intuition behind Algorithm 2 is as follows: the constraint qi ≤ 1
(1−ε)n ensures that q is an ε-deletion

of the uniform distribution over x1, . . . , xn. Then, subject to that constraint, Algorithm 2 seeks to minimize
the weighted covariance matrix: note the objective is exactly ‖Σq‖2.

Algorithm 2 is non-trivial to analyze, because although the constraint set is convex, the objective is
non-convex: both qi and µq are linear in q, and so the overall objective (even for a fixed v) is thus a non-convex
cubic in q. On the other hand, for any “reasonable” choice of q, µq should be close to µp∗ . If we apply this
approximation–substituting µp∗ for µq–then the objective becomes convex again. So the main idea behind
the proof is to show that this substitution can be (approximately) done.

Before getting into that, we need to understand what stationary points of (117) look like. In general,
a stationary point is one where the gradient is either zero, or where the point is at the boundary of the
constraint set and the gradient points outward into the infeasible region for the constraints.

However, the supremum over v can lead to a non-differentiable function (e.g. max(x1, x2) is non-
differentiable when x1 = x2), so these conditions need to be refined slightly to handle that. We can use
something called a “Clarke subdifferential”, to show that the preceding conditions at least hold for some v
that maximizes the supremum:

Lemma 2.40. Suppose that q is a stationary point of (117). Then, for any feasible p, there exists a v ∈ Rd
with ‖v‖2 = 1 such that

Eq[〈v,X − µq〉2] ≤ Ep[〈v,X − µq〉2]. (98)

Moreover, v is a maximizer of the left-hand-side, i.e. v>Σqv = ‖Σq‖.

Proof. Let Fv(q) = Eq[〈v,X − µq〉2]. First, compute ∇Fv(q). We have

∂

∂qi
F (q) =

∂

∂qi

n∑
j=1

qj〈v, xj − µq〉2 (99)

= 〈v, xi − µq〉2 + 2
( n∑
j=1

qj〈v, xj − µq〉
)∂µq
∂qi

(100)

= 〈v, xi − µq〉2, (101)

where the last equality is because
∑
j qj(xj − µq) = 0. Consequently, ∇Fv(q)i = 〈v, xi − µq〉2.

Now, let F (q) = max‖v‖2=1 Fv(q) = ‖Σq‖. If the maximizing v is unique and equal to v∗, then ∇F (q) =
∇Fv∗(q), and q is a stationary point if and only if

∑
i(qi − pi)∇Fv∗(q)i ≤ 0 for all feasible p, or equivalently

Eq[〈v∗, X − µq〉2]− Ep[〈v∗, X − µq〉2] ≤ 0, which is exactly the condition (98).
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Suppose (the harder case) that the maximizing v is not unique. Then F is not differentiable at q, but
the Clark subdifferential is the convex hull of ∇Fv(q) for all maximizing v’s. Stationarity implies that∑
i(qi − pi)gi ≤ 0 for some g in this convex hull, and thus by convexity that

∑
i(qi − pi)∇Fv∗(q)i ≤ 0 for

some maximizing v∗. This gives us the same desired condition as before and thus completes the proof.

Given Lemma 2.40, we are in a better position to analyze Algorithm 2. In particular, for any p (we will
eventually take the global minimizer p of (117)), Lemma 2.40 yields

‖Covq‖ = Eq[〈v,X − µq〉2] (102)

≤ Ep[〈v,X − µq〉2] (103)

= Ep[〈v,X − µp〉2] + 〈v, µp − µq〉2 (104)

≤ ‖Covp‖+ ‖µp − µq‖22. (105)

The ‖µp − µq‖22 quantifies the “error due to non-convexity”–recall that if we replace µq with a fixed µp
in (117), the problem becomes convex, and hence any stationary point would be a global minimizer. The
distance ‖µp − µq‖22 is how much we pay for this discrepancy.

Fortunately, µp−µq is small, precisely due to the modulus of continuity! We can show that any feasible p, q

for (117) satisfies TV(p, q) ≤ ε
1−ε (see Lemma 2.41), hence Lemma 2.38 gives ‖µp−µq‖2 ≤

√
‖Σq‖ε
1−2ε +

√
‖Σp‖ε
1−2ε .

Plugging back in to (105), we obtain

‖Covq‖ ≤ ‖Covp‖+
ε

1− 2ε

(√
‖Σp‖+

√
‖Σq‖

)2

. (106)

For fixed ‖Covp‖, we can view this as a quadratic inequality in
√
‖Σp‖. Solving the quadratic then yields

‖Covq‖ ≤
( 1− ε

1− 3ε

)2

‖Covp‖. (107)

In particular, taking p to be the global minimum p of (117), we have ‖Covp‖ ≤ ‖Covp∗‖ ≤ σ2, so ‖Covq‖ ≤(
1−ε
1−3ε

)2

σ2. Plugging back into Lemma 2.38 again, we then have

‖µq − µp∗‖2 ≤
√

ε

1− 2ε

(
σ +

1− ε
1− 3ε

σ
)

= 2

√
1− 2ε

1− 3ε

√
εσ, (108)

which proves Proposition 2.39.

2.7.1 Lower Bound (Breakdown at ε = 1/3)

The 1− 3ε in the denominator of our bound means that Proposition 2.39 becomes vacuous once ε ≥ 1/3. Is
this necessary? We will show that it indeed is.

Specifically, when ε = 1/3, it is possible to have:

p∗ =
1

2
δ−a +

1

2
δ0, (109)

p̃ =
1

3
δ−a +

1

3
δ0 +

1

3
δb, (110)

q =
1

2
δ0 +

1

2
δb, (111)

where q is a stationary point no matter how large b is. In particular, µq = b
2 can be arbitrarily far away from

the true mean of −a2 .
To see this more intuitively, note that an equivalent minimization problem to (117) would be to minimize∑n
i=1 qi(xi−µ)2 with respect to both qi and µ (since the minimizer for fixed q is always at µ = µq). Therefore,

a stationary point is one such that:

• The qi are concentrated on the (1− ε)n smallest values of (xi − µ)2
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• µ is equal to µq

The distribution q clearly satisfies this: we have µq = b/2, and both 0 and b are closer to µq than −a is.
This also shows why the breakdown point is 1/3 and not smaller. If ε were slightly smaller than 1/3, then

some of the mass of q would have to remain on δ−a. Then as b increases, the mean µq would increase more
slowly, and eventually −a would be closer to µq than b.

2.7.2 Auxiliary Lemmas

Proof of Lemma 2.38. Note that the proof of Lemma 2.1 implies that if E is an event with q(E) ≥ 1 − ε,
then ‖Eq[X] − Eq[X | E]‖ ≤

√
‖Σq‖ ε

1−ε . Now if q, p satisfy TV(p, q) ≤ ε, there is a midpoint r that is an

ε-deletion of both p and q. Applying the preceding result, we thus have ‖Eq[X] − Er[X]‖2 ≤
√
‖Σq‖ ε

1−ε .

Similarly ‖Ep[X]− Er[X]‖2 ≤
√
‖Σp‖ ε

1−ε . The result then follows by the triangle inequality.

Lemma 2.41. Suppose that q, q′ are both ε-deletions of a distribution p. Then TV(q, q′) ≤ ε
1−ε .

Proof. Conceptually, the reason Lemma 2.41 is true is that q′ can be obtained from q by first adding an
ε-fraction of points (to get to p), then deleting an ε-fraction. Since TV ≤ ε exactly allows an ε-fraction of of
additions and deletions, this should yield the result. The reason we get ε

1−ε is because q and q′ are only a
(1− ε)-“fraction” of p, so the ε-deletions are more like ε

1−ε -deletions relative to q and q′.
To be more formal, for any set A, note that we have

q(A) ≤ p(A)

1− ε
and q′(A) ≤ r(A)

1− ε
. (112)

Also, using Ac instead of A, we also get

q(A) ≥ p(A)− ε
1− ε

and q′(A) ≥ p(A)− ε
1− ε

. (113)

Combining these inequalities yields

q(A) ≤ ε+ (1− ε)q′(A)

1− ε
≤ ε

1− ε
+ q′(A), (114)

and similarly q′(A) ≤ ε
1−ε + q(A), which together implies |q(A)− q′(A)| ≤ ε

1−ε . Since this holds for all A, we
obtain our TV distance bound.

[Lecture 9]

2.8 Approximate Eigenvectors in Other Norms

Algorithm 2 is specific to the `2-norm. Let us suppose that we care about recovering an estimate µ̂ such that
‖µ− µ̂‖ is small in some norm other than `2 (such as the `1-norm, which may be more appropriate for some
combinatorial problems). It turns out that an analog of bounded covariance is sufficient to enable estimation
with the typical O(σ

√
ε) error, as long as we can approximately solve the analogous eigenvector problem. To

formalize this, we will make use of the dual norm:

Definition 2.42. Given a norm ‖ · ‖, the dual norm ‖ · ‖∗ is defined as

‖u‖∗ = sup
‖v‖2≤1

〈u, v〉. (115)

As some examples, the dual of the `2-norm is itself, the dual of the `1-norm is the `∞-norm, and the dual
of the `∞-norm is the `1-norm. An important property (we omit the proof) is that the dual of the dual is the
original norm:

Proposition 2.43. If ‖ · ‖ is a norm on a finite-dimensional vector space, then ‖ · ‖∗∗ = ‖ · ‖.
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For a more complex example: let ‖v‖(k) be the sum of the k largest coordinates of v (in absolute value).
Then the dual of ‖ · ‖(k) is max(‖u‖∞, ‖u‖1/k). This can be seen by noting that the vertices of the constraint
set {u | ‖u‖∞ ≤ 1, ‖u‖1 ≤ k} are exactly the k-sparse {−1, 0,+1}-vectors.

Let Gcov(σ, ‖ · ‖) denote the family of distributions satisfying max‖v‖∗≤1 v
>Covp[X]v ≤ σ2. Then Gcov is

resilient exactly analogously to the `2-case:

Proposition 2.44. If p ∈ Gcov(σ, ‖ · ‖) and r ≤ p
1−ε , then ‖µ(r) − µ(p)‖ ≤

√
2ε

1−εσ. In other words, all

distributions in Gcov(σ, ‖ · ‖) are (ε,O(σ
√
ε))-resilient.

Proof. We have that ‖µ(r) − µ(p)‖ = 〈µ(r) − µ(p), v〉 for some vector v with ‖v‖∗ = 1. The result then
follows by resilience for the one-dimensional distribution 〈X, v〉 for X ∼ p.

When p∗ ∈ Gcov(σ, ‖ · ‖), we will design efficient algorithms analogous to Algorithm 2. The main difficulty
is that in norms other than `2, it is generally not possible to exactly solve the optimization problem
max‖v‖∗≤1 v

>Σ̂cv that is used in Algorithm 2. We instead make use of a κ-approximate relaxation:

Definition 2.45. A set C of positive semidefinie matrices is a κ-approximate relaxation if C contains vv>

for all v satisfying ‖v‖∗ ≤ 1, and furthermore

sup
M∈C
〈M,Σ〉 ≤ κ sup

‖v‖∗≤1

v>Σv for all Σ � 0. (116)

Thus a κ-approximate relaxation over-approximates 〈vv>,Σ〉, but also it underapproximates it within a
factor of κ. Given such a relaxation, we have the following analog to Algorithm 2:

Algorithm 3 MinCovNorm

1: Input: x1, . . . , xn ∈ Rd and κ-approximate relaxation C.
2: Find any stationary point q of the optimization problem:

min
q

sup
M∈C

n∑
i=1

qi(xi − µq)>M(xi − µq), (117)

s.t. µq =
∑
i

qixi,

q ≥ 0,
∑
i

qi = 1, qi ≤
1

(1− ε)n

3: Output µ̂q, the empirical mean for the stationary point q.

Algorithm 3 outputs an estimate of the mean with error O(σ
√
κε). The proof is almost exactly the same

as Algorithm 2; the main difference is that we need to ensure that 〈Σp,M〉, the inner product of M with the
true covariance, is not too large. This is where we use the κ-approximation property. We leave the detailed
proof as an exercise, and focus on how to construct a κ-approximate relaxation C.

Semidefinite programming. As a concrete example, suppose that we wish to estimate µ in the `1-norm
‖v‖ =

∑d
j=1 |vj |. The dual norm is the `∞-norm, and hence our goal is to approximately solve the optimization

problem
maximize v>Σv subject to ‖v‖∞ ≤ 1. (118)

The issue with (118) is that it is not concave in v because of the quadratic function v>Σv. However, note
that v>Σv = 〈Σ, vv>〉. Therefore, if we replace v with the variable M = vv>, then we can re-express the
optimization problem as

maximize 〈Σ,M〉 subject to Mjj ≤ 1 for all j, M � 0, rank(M) = 1. (119)

Here the first constraint is a translation of ‖v‖∞ ≤ 1, while the latter two constrain M to be of the form vv>.
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This is almost convex in M , except for the constraint rank(M) = 1. If we omit this constraint, we obtain
the optimization

maximize 〈Σ,M〉
subject to Mjj = 1 for all j,

M � 0. (120)

Note that here we replace the constraint Mjj ≤ 1 with Mjj = 1; this can be done because the maximizer of
(120) will always have Mjj = 1 for all j. For brevity we often write this constraint as diag(M) = 1.

The problem (120) is a special instance of a semidefinite program and can be solved in polynomial time (in
general, a semidefinite program allows arbitrary linear inequality or positive semidefinite constraints between
linear functions of the decision variables; we discuss this more below).

The optimizer M∗ of (120) will always satisfy 〈Σ,M∗〉 ≥ sup‖v‖∞≤1 v
>Σv because and v with ‖v‖∞ ≤ 1

yields a feasible M . The key is to show that it is not too much larger than this. This turns out to be a
fundamental fact in the theory of optimization called Grothendieck’s inequality :

Theorem 2.46. If Σ � 0, then the value of (120) is at most π
2 sup‖v‖∞≤1 v

>Σv.

See Alon and Naor (2004) for a very well-written exposition on Grothendieck’s inequality and its relation
to optimization algorithms. In that text we also see that a version of Theorem 2.46 holds even when Σ is not
positive semidefinite or indeed even square. Here we produce a proof based on [todo: cite] for the semidefinite
case.

Proof of Theorem 2.46. The proof involves two key relations. To describe the first, given a matrix X let
arcsin[X] denote the matrix whose i, j entry is arcsin(Xij) (i.e. we apply arcsin element-wise). Then we have
(we will show this later)

max
‖v‖∞≤1

v>Σv = max
X�0,diag(X)=1

2

π
〈Σ, arcsin[X]〉. (121)

The next relation is that
arcsin[X] � X. (122)

Together, these imply the approximation ratio, because we then have

max
M�0,diag(M)=1

〈Σ,M〉 ≤ max
M�0,diag(M)=1

〈Σ, arcsin[M ]〉 =
π

2
max
‖v‖∞≤1

v>Σv. (123)

We will therefore focus on establishing (121) and (122).
To establish (121), we will show that any X with X � 0, diag(X) = 1 can be used to produce a probability

distribution over vectors v such that E[v>Σv] = 2
π 〈Σ, arcsin[X]〉.

First, by Graham/Cholesky decomposition we know that there exist vectors ui such that Mij = 〈ui, uj〉
for all i, j. In particular, Mii = 1 implies that the ui have unit norm. We will then construct the vector v by
taking vi = sign(〈ui, g〉) for a Gaussian random variable g ∼ N (0, I).

We want to show that Eg[vivj ] = 2
π arcsin(〈ui, uj〉). For this it helps to reason in the two-dimensional

space spanned by vi and vj . Then vivj = −1 if the hyperplane induced by g cuts between ui and uj , and +1
if it does not. Letting θ be the angle between ui and uj , we then have P[vjvj = −1] = θ

π and hence

Eg[vivj ] = (1− θ

π
)− θ

π
=

2

π
(
π

2
− θ) =

2

π
arcsin(〈ui, uj〉), (124)

as desired. Therefore, we can always construct a distribution over v for which E[v>Σv] = 2
π 〈Σ, arcsin[M ]〉,

hence the right-hand-side of (121) is at most the left-hand-side. For the other direction, note that the
maximizing v on the left-hand-side is always a {−1,+1} vector by convexity of v>Σv, and for any such vector
we have 2

π arcsin[vv>] = vv>. Thus the left-hand-side is at most the right-hand-side, and so the equality
(121) indeed holds.

We now turn our attention to establishing (122). For this, let X�k denote the matrix whose i, j entry is
Xk
ij (we take element-wise power). We require the following lemma:
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Lemma 2.47. For all k ∈ {1, 2, . . .}, if X � 0 then X�k � 0.

Proof. The matrix X�k is a submatrix of X⊗k, where (X⊗k)i1···ik,j1···jk = Xi1,j1 · · ·Xik,jk . We can verify
that X⊗k � 0 (its eigenvalues are λi1 · · ·λik where λi are the eigenvalues of X), hence so is X�k since
submatrices of PSD matrices are PSD.

With this in hand, we also make use of the Taylor series for arcsin(z): arcsin(z) =
∑∞
n=0

(2n)!
(2nn!)2

z2n+1

2n+1 =

z + z3

6 + · · · . Then we have

arcsin[X] = X +

∞∑
n=1

(2n)!

(2nn!)2

1

2n+ 1
X�(2n+1) � X, (125)

as was to be shown. This completes the proof.

Alternate proof (by Mihaela Curmei): We can also show that X�k � 0 more directly. Specifically,
we will show that if A,B � 0 then A�B � 0, from which the result follows by induction. To show this let
A =

∑
i λiuiu

>
i and B =

∑
j νjvjv

>
j and observe that

A�B = (
∑
i

λiuiu
>
i )� (

∑
j

νjvjv
>
j ) (126)

=
∑
i,j

λiνj(uiu
>
i )� (vjv

>
j ) (127)

=
∑
i,j

λiνj︸︷︷︸
≥0

(ui � vj)(ui � vj)>︸ ︷︷ ︸
�0

, (128)

from which the claim follows. Here the key step is that for rank-one matrices the � operation behaves nicely:
(uiu

>
i )� (vjv

>
j ) = (ui � vj)(ui � vj)>.

[Bonus Material (Optional)]

2.9 Semidefinite Programming and Sum-of-Squares

In the previous subsection, we saw how to approximately solve max‖v‖∞≤1 v
>Σv via the semidefinite program

defined by maxM�0,diag(M)=1〈M,Σ〉. In this section we will cover semidefinite programming in more detail,

and build up to sum-of-squares programming, which will be used to achieve error O(ε1−1/k) when p∗ has
“certifiably bounded” kth moments (recall that we earlier achieved error O(ε1−1/k) for bounded kth moments
but did not have an efficient algorithm).

A semidefinite program is an optimization problem of the form

maximize 〈A,X〉 (129)

subject to X � 0,

〈X,B1〉 ≤ c1,
...

〈X,Bm〉 ≤ cm.

Here 〈X,Y 〉 = tr(XTY ) =
∑
ij XijYij is the inner product between matrices, which is the same as the

elementwise dot product when considered as n2-dimensional vectors.
Here the matrix A specifies the objective of the program, while (Bj , cj) specify linear inequality constraints.

We additionally have the positive semidefinite cone constraint that X � 0, meaning that X must be symmetric
with only non-negative eigenvalues. Each of A and B1, . . . , Bm are n× n matrices while the cj are scalars.
We can equally well minimize as maximize by replacing A with −A.
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While (129) is the canonical form for a semidefinite program, problems that are seemingly more complex
can be reduced to this form. For one, we can add linear equality constraints as two-sided inequality constraints.
In addition, we can replace X � 0 with L(X) � 0 for any linear function L, by using linear equality constraints
to enforce the linear relations implied by L. Finally, we can actually include any number of constraints

L1(X) � 0, Lk(X) � 0, since this is e.g. equivalent to the single constraint

[
L1(X) 0

0 L2(X)

]
when

k = 2. As an example of these observations, the following (arbitrarily-chosen) optimization problem is also a
semidefinite program:

minimize
x,M,Y

a>x+ 〈A1,M〉+ 〈A2, Y 〉 (130)

subject to M + Y � Σ

diag(M) = 1

tr(Y ) ≤ 1

Y � 0[
1 x>

x M

]
� 0

(As a brief aside, the constraint [1 x>;x M ] � 0 is equivalent to xx> �M which is in turn equivalent to
x>M−1x ≤ 1 and M � 0.)

Semidefinite constraints as quadratic polynomials. An alternative way of viewing the constraint
M � 0 is that the polynomial pM (v) = v>Mv is non-negative for all v ∈ Rd. More generally, if we have a
non-hogoneous polynomial pM,y,c(v) = v>Mv+ y>v+ c, we have pM,y,c(v) ≥ 0 for all v if and only if M ′ � 0

for M ′ =

[
c y>/2
y/2 M

]
� 0.

This polynomial perspective is helpful for solving eigenvalue-type problems. For instance, ‖M‖ ≤ λ if and
only if v>Mv ≤ λ‖v‖22 for all v, which is eqvuialent to asking that v>(λI −M)v ≥ 0 for all v. Thus ‖M‖
can be expressed as the solution to

minimize λ (131)

subject to λI −M � 0 (equivalently, v>(λI −M)v ≥ 0 for all v)

We thus begin to see a relationship between moments and polynomial non-negativity constraints.

Higher-degree polynomials. It is tempting to generalize the polynomial approach to higher moments.
For instance, M4(p) denote the 4th moment tensor of p, i.e. the unique symmetric tensor such that

〈M4, v
⊗4〉 = Ex∼p[〈x− µ, v〉4]. (132)

Note we can equivalently express 〈M4, v
⊗4〉 =

∑
ijkl(M4)ijklvivjvkvl, and hence (M4)ijkl = E[(xi − µ)(xj −

µ)(xk − µ)(xl − µ)].

A distribution p has bounded 4th moment if and only if 〈M, v⊗4〉 ≤ λ‖v‖42 for all v. Letting pM (v)
def
=

〈M,v⊗4〉, we thus can express the 4th moment of p as the polynomial program

minimize λ (133)

subject to λ(v2
1 + · · ·+ v2

d)2 − pM (v) ≥ 0 for all v ∈ Rd

Unfortunately, in constrast to (130), (133) is NP-hard to solve in general. We will next see a way to
approximate (133) via a technique called sum-of-squares programming, which is a way of approximately
reducing polynomial programs such as (133) to a large but polynomial-size semidefinite program.
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Warm-up: certifying non-negativity over R. Consider the one-dimensional polynomial

q(x) = 2x4 + 2x3 − x2 + 5 (134)

Is it the case that q(x) ≥ 0 for all x? If so, how would we check this?
What if I told you that we had

q(x) =
1

2
(2x2 + x− 3)2 +

1

2
(3x+ 1)2 (135)

Then, it is immediate that q(x) ≥ 0 for all x, since it is a (weighted) sum of squares.
How can we construct such decompositions of q? First observe that we can re-write q as the matrix

function

q(x) =

 1
x
x2

>  5 0 0
0 −1 1
0 1 2


︸ ︷︷ ︸

M

 1
x
x2

 . (136)

On the other hand, the sum-of-squares decomposition for q implies that we can also write

q(x) =

 1
x
x2

>
1

2

 −3
1
2

 −3
1
2

> +
1

2

 1
3
0

 1
3
0

>

 1

x
x2

 , (137)

i.e. we can decompose the matrix M defining q(x) = [1;x;x2]>M [1;x;2 ] into a non-negative combination of
rank-one outer products, which is true if and only if M � 0.

There is one problem with this, which is that despite our successful decomposition of q, M is self-evidently
not positive semidefinite! (For instance, M22 = −1.) The issue is that the matrix M defining q(x) is not

unique. Indeed, any M(a) =

 5 0 −a
0 2a− 1 1
−a 1 2

 would give rise to the same q(x), and a sum-of-squares

decomposition merely implies that M(a) � 0 for some a. Thus, we obtain the following characterization:

q(x) is a sum of squares

k∑
j=1

qj(x)2 ⇐⇒ M(a) � 0 for some a ∈ R. (138)

For the particular decomposition above we took a = 3.

Sum-of-squares in two dimensions. We can generalize the insights to higher-dimensional problems.
Suppose for instance that we wish to check whether q(x, y) = a40x

4 + a31x
3y + a22x

2y2 + a13xy
3 + a04y

4 +
a30x

3 + a21x
2y + a12xy

2 + a03y
3 + a20x

2 + a11xy + a02y
2 + a10x + a01y + a00 is non-negative for all x, y.

Again, this is hard-to-check, but we can hope to check the sufficient condition that q is a sum-of-squares,
which we will express as q �sos 0. As before this is equivalent to checking that a certain matrix is positive
semidefinite. Observe that

q(x, y) =


x2

xy
y2

x
y
1



> 
a40 a31/2 −b a30/2 −c −b′
a31/2 a22 + 2b a13/2 a21/2 + c −c′ −c′′
−b a13/2 a04 a21/2 + c′ a03/2 −b′′
a30/2 a21/2 + c a21/2 + c′ a20 + 2b′ a11/2 + c′′ a10/2
−c −c′ a03/2 a11/2 + c′′ a02 + 2b′′ a01/2
−b′ −c′′ −b′′ a10/2 a01/2 a00




x2

xy
y2

x
y
1

 (139)

for any b, b′, b′′, c, c′, c′′. Call the above expression M(b, b′, b′′, c, c′, c′′), which is linear in each of its variables.
Then we have q �sos 0 if and only if M(b, b′, b′′, c, c′, c′′) � 0 for some setting of the bs and cs.
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Sum-of-squares in arbitrary dimensions. In general, if we have a polynomial q(x1, . . . , xd) in d variables,
which has degree 2t, then we can embed it as some matrix M(b) (for decision variables b that capture the
symmetries in M as above), and the dimensionality of M will be the number of monomials of degree at most
t which turns out to be

(
d+t
t

)
= O((d+ t)t).

The upshot is that any constraint of the form q �sos 0, where q is linear in the decision variables, is a
semidefinite constraint in disguise. Thus, we can solve any program of the form

maximize
y

c>y (140)

subject to q1 �sos 0, . . . , qm �sos 0,

where the qj are linear in the decision variables y. (And we are free to throw in any additional linear inequality
or semidefinite constraints as well.) We refer to such optimization problems as sum-of-squares programs, in
analogy to semidefinite programs.

Sum-of-squares for kth moment. Return again to the kth moment problem. As a polynomial program
we sought to minimize λ such that λ(v2

1 + · · ·+ v2
d)
k/2 − 〈M2k, v

⊗2k〉 was a non-negative polynomial. It is
then natural to replace the non-negativity constraint with the constraint that λ‖v‖k2 − 〈M2k, v

⊗2k〉 �sos 0.
However, we actually have a bit more flexibility and it turns out that the best program to use is

minimize λ (141)

subject to λ− 〈M2k, v
⊗2k〉+ (‖v‖22 − 1)q(v) �sos 0 for some q of degree at most 2k − 2

Note that the family of all such q can be linearly parameterized and so the above is indeed a sum-of-
squares program. It is always at least as good as the previous program because we can take q(v) =
λ(1 + ‖v‖22 + · · ·+ ‖v‖2k−2

2 ).
When the solution λ∗ to (141) is at most σ2k for M2k(p), we say that p has 2kth moment certifiably

bounded by σ2k. In this case a variation on the filtering algorithm achieves error O(σε1−1/2k). We will not
discuss this in detail, but the main issue we need to resolve to obtain a filtering algorithm is to find some
appropriate tensor T such that 〈T,M2k〉 = λ∗ and T “looks like” the expectation of v⊗2k for some probability
distribution over the unit sphere. Then we can filter using τi = 〈T, (xi − µ̂)⊗2k〉.

To obtain T requires computing the dual of (141), which requires more optimization theory than we
have assumed from the reader, but it can be done in polynomial time. We refer to the corresponding T
as a pseudomoment matrix. Speaking very roughly, T has all properties of a moment matrix that can be
“proved using only sum-of-squares inequalities”, which includes all properties that we needed for the filtering
algorithm to work. We will henceforth ignore the issue of T and focus on assumptions on p that ensure that
M2k(p) is certifiably bounded. The main such assumption is the Poincaré inequality, which we cover in the
next section.

2.10 Sum-of-Squares Certifiably from the Poincaré inequality

We now turn our attention to bounding the value of (141). Ignoring finite-sample issues, our goal is to

identify assumptions on p such that M2k(p)
def
= EX∼p[(X − µ)⊗2k] yields a small value for (141).

Before doing so, we will introduce some machinery for establishing bounds on (141). The main idea is
that of a sum-of-squares proof:

Definition 2.48. A polynomial inequality p(v) ≤ q(v) has a sum-of-squares proof if q(v)− p(v) �sos 0. We
will also denote this as q(v) �sos p(v) or p(v) �sos q(v).

The usefulness of this perspective is that the relation �sos satisfies many of the same properties as ≤:

• If p1 �sos p2 and p2 �sos p3, then p1 �sos p3.

• If p1 �sos q1 and p2 �sos q2, then p1 + p2 �sos q1 + q2.

• If p1 �sos 0 and p2 �sos 0, then p1p2 �sos 0.
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• If p1 �sos p2, q1 �sos q2, and p2, q1 �sos 0, then p1q1 �sos p2q2.

• Moreover, many “standard” inequalities such as Cauchy-Schwarz and Hölder have sum-of-squares proofs.

Using these, we can often turn a normal proof that p ≤ q into a sum-of-squares proof that p � q as long as
we give sum-of-squares proofs for a small number of key steps.

For concreteness, we will prove the last two claims properties above. We first prove that p1, p2 �sos 0 =⇒
p1p2 �sos 0. Indeed we have

p1(v)p2(v) = (
∑
i

p1i(v)2)(
∑
j

p2j(v)2) =
∑
ij

(p1i(v)p2j(v))2 �sos 0 (142)

Next we prove that p1 �sos p2, q1 �sos q2, and p2, q1 �sos 0 implies p1q2 �sos p2q2. This is because

p2q2 − p1q1 = p2(q2 − q1) + (p2 − p1)q1 �sos 0, (143)

where the second relation uses p2, q2 − q1 �sos 0 and p2 − p1, q1 �sos 0 together with the previous result.
In view of this, we can reframe bounding (141) as the following goal:

Goal: Find a sum-of-squares proof that 〈M2k(p), v⊗2k〉 �sos λ‖v‖2k2 .

Certifiability for Gaussians. We now return to the assumptions needed on p that will enable us to
provide the desired sum-of-squares proof. Let us start by observing that a sum-of-squares proof exists for any
Gaussian distribution: If p = N (µ,Σ), then

〈M2k(N (µ,Σ)), v⊗2k〉 = 〈M2k(N (0, I)), (Σ1/2v)⊗2k〉 (144)

=
( k∏
i=1

(2i− 1)
)
〈I, (Σ1/2v)⊗2k〉 (145)

=
( k∏
i=1

(2i− 1)
)
‖Σ1/2v‖2k2 (146)

≤ (2k)k‖Σ‖k‖v‖2k2 , (147)

so we may take λ = (2k‖Σ‖)k. (Here I denotes the identity tensor that is 1 along the diagonal and zero
elsewhere.) Therefore normal distributions have certifiably bounded moments, but the proof above heavily
exploited the rotational symmetry of a normal distribution. We can provide similar proofs for other highly
symmetric distributions (such as the uniform distribution on the hypercube), but these are unsatisfying as
they only apply under very specific distributional assumptions. We would like more general properties that
yield certifiably bounded moments.

Poincaré inequality. The property we will use is the Poincaré inequality. A distribution p on Rd is said
to satisfy the Poincaré inequality with parameter σ if

Varx∼p[f(x)] ≤ σ2Ex∼p[‖∇f(x)‖22] (148)

for all differentiable functions f : Rd → R. This is a “global to local property”–it says that for any function
that for any function f that varies under p, that variation can be picked up in terms of local variation (the
gradient). In particular, it says that p doesn’t have any “holes” (regines with low probability density that lie
between two regions of high probability density). Indeed, suppose that A and B were two disjoint convex
regions with p(A) = p(B) = 1

2 . Then p cannot satisfy the Poincaré inequality with any constant, since there
is a function that is 1 on A, 0 on B, and constant on both A and B.

Below are some additional examples and properties of Poincaré distributions:

• A one-dimensional Gaussian N (µ, σ2) is Poincaré with constant σ.

• If p, q are σ-Poincaré then their product p× q is σ-Poincaré. In particular a multivariate Gausssian
N (µ, σ2I) is σ-Poincaré.
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• If X ∼ p is σ-Poincaré and A is a linear map, then AX is (σ‖A‖)-Poincaré. In particular, aX1 + aX2

is (
√
a2 + b2σ)-Poincaré when X1 and X2 are both σ-Poincaré, and N (µ,Σ) is ‖Σ‖1/2-Poincaré.

• More generally, if X ∼ p is σ-Poincaré and f is L-Lipschitz, then f(X) is (σL)-Poincaré.

Together these imply that Poincaré distributions contain multivariate Gaussians, arbitrary Lipschitz functions
of Gaussians, and independent sums of such distributions. The above properties (except the initial Gaussian
property) are all straightforward computations. Let us next state two substantially deeper results:

• If p is σ-strongly log-concave (meaning that the log-probability density log p(x) satisfies ∇2 log p(x) �
− 1
σ2 I), then p is σ-Poincaré (Bakry and Émery, 1985).

• Suppose that the support of X ∼ p has `2-radius at most R, and let Z = N (0, τ2I) for τ ≥ 2R. Then
X + Z is (τ

√
e)-Poincaré (Bardet et al., 2018).

Thus Poincaré encompasses all strongly log-concave densities, and effectively any product of bounded random
variables (after adding Gaussian noise, which we can always do ourselves).

It is instructive to compare Poincaré to the sub-Gaussian property that we have so far relied on. Poincaré
is neither strictly stronger or weaker than sub-Gaussian, but it is stronger than sub-exponential (we will see
this below). In general, we should think of Poincaré as being substantially stronger than sub-exponential: it
implies that not only is the distribution itself sub-exponential, but so is any Lipschitz function of the density.

As an example, consider the random variable (X,Y ) ∈ Rd where X ∼ N (0, I) and Y = εX for a
Rademacher random variable ε. Then (X,Y ) is sub-Gaussian, but not Poincaré with good constant: if we
take f(X,Y ) =

∑
iXiYi, then f is with high probability close to either +d or −d, so Var[f(X,Y )] ≈ d2.

However, ∇f(X,Y ) = (Y1, . . . , Yd, X1, . . . , Xd) and so ‖∇f(X,Y )‖22 is close to 2d with high probability. Thus
while the sub-Gaussian constant is O(1), the Poincaré constant in this case is Ω(

√
d).

Consequences of Poincaré. So far we have seen conditions that imply Poincaré, but we would also like
to derive consequences of this property. Below are some of the most useful ones:

• If X ∼ p is σ-Poincaré, then Lipschitz functions concentrate: P[|f(x)− E[f(x)]| ≥ t] ≤ 6 exp(−t/(σL))
for any L-Lipschitz f .

• As a corollary, we have volume expansion: For any set A, let Aε be the set of points within `2-distance
ε of A. Then p(A)p(Acε) ≤ 36 exp(−ε/σ).

This second property implies, for instance, that if p(A) ≥ δ, then almost all points will be within distance
O(σ log(1/δ)) of A.

To prove the second property, let f(x) = min(infy∈A ‖x− y‖2.ε). Then f is Lipschitz, is 0 on A, and is ε
on Acε. Let µ be the mean of f(X). Since f is sub-exponential we have p(A) = p(f(X) = 0) ≤ 6 exp(−µ/σ),
and p(Acε) = p(f(X) = ε) ≤ 6 exp(−(ε− µ))/σ). Multiplying these together yields the claimed result.

The most important property for our purposes, however, will be the following:

Theorem 2.49. Suppose that p is σ-Poincaré and let f be a differentiable function such that E[∇jf(X)] = 0
for j = 1, . . . , k − 1. Then there is a universal constant Ck such that Var[f(X)] ≤ Ckσ2kE[‖∇kf(X)‖2F ].

Note that k = 1 is the original Poincaré property, so we can think of Theorem 2.49 as a generalization of

Poincaré to higher derivatives. Note also that ∇kf(X) is a tensor in Rdk ; the notation ‖∇kf(X)‖2F denotes
the squared Frobenius norm of ∇kf(X), i.e. the sum of the squares of its entries.

Theorem 2.49, while it may appear to be a simple generalization of the Poincaré property, is a deep
result that was established in Adamczak and Wolff (2015), building on work of Lata la (2006). We will use
Theorem 2.49 in the sequel to construct our sum-of-squares proofs.

Sum-of-squares proofs for Poincaré distributions. Here we will construct sum-of-squares proofs that

M2k(v)
def
= Ep[〈x− µ, v〉2k] �sos C

′
kσ

2k‖v‖2k2 whenever p is σ-Poincaré, for some universal constants C ′k. We
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will exhibit the proof for k = 1, 2, 3 (the proof extends to larger k and the key ideas appear already by k = 3).
We introduce the notation

Mk = E[(x− µ)⊗k], (149)

Mk(v) = 〈Mk, v
⊗k〉 = E[〈x− µ, v〉k]. (150)

Proof for k = 1. We wish to show that Ep[〈x− µ, v〉2] �sos σ
2‖v‖22. To do this take fv(x) = 〈x, v〉. Then

the Poincaré inequality applied to fv yields

Ep[〈x− µ, v〉2] = Var[fv(x)] ≤ σ2E[‖∇fv(x)‖22] = σ2E[‖v‖22] = σ2‖v‖22. (151)

Thus M2(v) ≤ σ2‖v‖22 (this is just saying that Poincaré distributions have bounded covariance). This
property has a sum-of-squares proof because it is equivalent to σ2I −M2 � 0, and we know that all positive
semidefiniteness relations are sum-of-squares certifiable.

Proof for k = 2. Extending to k = 2, it makes sense to try fv(x) = 〈x − µ, v〉2. Then we have
∇fv(x) = 2〈x − µ, v〉v and hence E[∇fv(x)] = 0. We also have ∇2fv(x) = 2v ⊗ v. Thus applying
Theorem 2.49 we obtain

Var[fv(x)] ≤ C2σ
4E[‖2v ⊗ v‖2F ] = 4C2σ

4‖v‖42. (152)

We also have Var[fv(x)] = E[〈x− µ, v〉4]− E[〈x− µ, v〉2]2 = M4(v)−M2(v)2. Thus

M4(v) = (M4(v)−M2(v)2) +M2(v)2 (153)

≤ 4C2σ
4‖v‖42 + σ4‖v‖42 = (4C2 + 1)σ4‖v‖42. (154)

This shows that the fourth moment is bounded, but how can we construct a sum-of-squares proof? We
already have that M2(v)2 �sos σ

4‖v‖42 (by 0 �sos M2(v) �sos σ
2‖v‖22 and the product property). Therefore

we focus on bounding M4(v)−M2(v)2 = Var[fv(x)].
For this we will apply Theorem 2.49 to a modified version of fv(x). For a matrix A, let fA(x) =

(x− µ)>A(x− µ) = 〈A, (x− µ)⊗2〉. Then fv(x) = fA(x) for A = vv>. By the same calculations as above we
have E[∇fA(x)] = 0 and ∇2fA(x) = 2A. Thus by Theorem 2.49 we have

Var[fA(x)] ≤ C2σ
4E[‖2A‖2F ] = 4C2σ

4‖A‖2F . (155)

On the other hand, we have Var[fA(x)] = 〈M4, A ⊗ A〉 − 〈M2, A〉2 = 〈M4 −M2 ⊗M2, A ⊗ A〉. Thus (155)
implies that

〈M4 −M2 ⊗M2, A⊗A〉 ≤ 4C2σ
4‖A‖2F . (156)

Another way of putting this is that M4 −M2 ⊗M2, when considered as a matrix in Rd2×d2 , is smaller than
4C2σ

4I in the semidefinite ordering. Hence 4C2σ
4I − (M4 −M2 ⊗M2) � 0 and so 4C2σ

4‖v‖42 − 〈M4 −M2 ⊗
M2, v

⊗4〉 �sos 0, giving us our desired sum-of-squares proof. To recap, we have:

M4(v) = (M4(v)−M2(v)2) +M2(v)2 (157)

�sos 4C2σ
4‖v‖42 + σ4‖v‖42 = (4C2 + 1)σ4‖v‖42, (158)

so we can take C ′2 = 4C2 + 1.
Proof for k = 3. Inspired by the k = 1, 2 cases, we try fv(x) = 〈x− µ, v〉3. However, this choice runs into

problems, because ∇fv(x) = 3〈x− µ, v〉2v and so E[∇fv(x)] = 3M2(v)v 6= 0. We instead should take

fv(x) = 〈x− µ, v〉3 − 3M2(v)〈x− µ, v〉, which yields (159)

E[∇fv(x)] = E[3〈x− µ, v〉2v − 3M2(v)v] = 0, (160)

E[∇2fv(x)] = E[6〈x− µ, v〉(v ⊗ v)] = 0, (161)

∇3fv(x) = 6(v ⊗ v ⊗ v). (162)

Applying Theorem 2.49 to fv(x) yields

Var[fv(x)] ≤ C3σ
6‖6(v ⊗ v ⊗ v)‖2F = 36C3σ

6‖v‖62. (163)
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We can additionally compute

Var[fv(x)] = E[(〈x− µ, v〉3 − 3M2(v)〈x− µ, v〉)2]− E[〈x− µ, v〉3 − 3M2(v)〈x− µ, v〉]2 (164)

= M6(v)− 6M2(v)M4(v) + 9M2(v)3 −M3(v)2. (165)

Since our goal is to bound M6(v), we re-arrange to obtain

M6(v) = Var[fv(x)] + 6M2(v)M4(v) +M3(v)2 − 9M2(v)2 (166)

≤ 36C3σ
6‖v‖62 + 6(σ2‖v‖22)(C ′2σ

4‖v‖42) +M3(v)2 + 0 (167)

We can also use Hölder’s inequality to obtain M3(v)2 ≤ M2(v)M4(v), which yields an overall bound of
M6(v) ≤ (36C3 + 12C ′2)σ6‖v‖62.

We now turn this into a sum-of-squares proof. We need to show the following four relations:

(i) Var[fv(x)] �sos 36C3σ
6‖v‖62, (ii) M2(v)M4(v) �sos (σ2‖v‖22)(C ′2σ

4‖v‖42), (168)

(iii) M3(v) �sos M2(v)M4(v), (iv) − 9M2(v)2 �sos 0. (169)

The relation (ii) again follows by the product property of �sos, while −9M2(v)2 �sos 0 is direct because
M2(v)2 is already a square. We will show in an exercise that the Hölder inequality in (iii) has a sum-of-squares
proof, and focus on (i).

The relation (i) holds for reasons analogous to the k = 2 case. For a symmetric tensor A ∈ Rd3 , let
fA(x) = 〈A, (x− µ)⊗3 − 3M2 ⊗ (x− µ)〉. Then just as before we have E[∇fA(x)] = 0, E[∇2fA(x)] = 0, and
so Var[fA(x)] ≤ 36C3σ

6‖A‖2F , which implies that3

M6 − 6M2 ⊗M4 + 9M2 ⊗M2 ⊗M2 −M3 ⊗M3 � 36C3σ
6I, (170)

and hence Var[fv(x)] �sos 36C3σ
6‖v‖62 (again because semidefinite relations have sum-of-squares proofs).

In summary, we have M6(v) �sos (36C3 + 12C ′2)σ6‖v‖62, as desired.
Generalizing to higher k. For higher k the proof is essentially the same. What is needed is a function fv(x)

whose first k−1 derivates all have zero mean. This always exists and is unique up to scaling by constants. For
instance, when k = 4 we can take fv(x) = 〈x−µ, v〉4−6M2(v)〈x−µ, v〉2−4M3(v)〈x−µ, v〉−M4(v)+6M2(v)2.
This appears somewhat clunky but is a special case of a combinatorial sum. For the general case, let Tk be
the set of all integer tuples (i0, i1, . . .) such that i0 ≥ 0, is ≥ 2 for s > 0, and i0 + i1 + · · · = k. Then the
general form is

fv,k(x) =
∑

(i0,...,ir)∈Tk

(−1)r
(

k

i0 · · · ir

)
〈x− µ, v〉i0Mi1(v)Mi2(v) · · ·Mir (v). (171)

The motivation for this formula is that it is the solution to ∇fv,k(x) = kfv,k−1(x)v. Using fv,k, one can
construct sum-of-squares proofs by applying Theorem 2.49 to the analogous fA,k function as before, and then
use induction, the product rule, and Hölder’s inequality as in the k = 3 case.

[Lectures 10-11]

3 Resilience Beyond Mean Estimation

We have so far focused primarily on mean estimation, first considering information theoretic and then
algorithmic issues. We now turn back to information theoretic issues with a focus on generalizing our results
from mean estimation to other statistical problems.

Let us recall our general setup: for true (test) distribution p∗ and corrupted (train) distribution p̃,
we observe samples X1, . . . , Xn from p̃ (oblivious contamination, although we can also consider adaptive

3Actually this is not quite true because we only bound Var[fA(x)] for symmetric tensors A. What is true is that this holds if
we symmetrize the left-hand-side of (170), which involves averaging over all ways of splitting M2 and M4 over the 3 copies of Rd
in Rd×d×d.
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contamination as in Section 2.6.2). We wish to estimate a parameter θ and do so via en estimator θ̂ =

θ̂(X1, . . . , Xn). Our goal is to construct an estimator such that L(p∗, θ̂) is small according to a given loss
function L. This was summarized in Figure 1 from Section 1.

As before, we will start by allowing our estimator θ̂ to directly access the population distribution p̃
rather than samples. Thus we wish to control the error L(p∗, θ̂(p̃)). Since this is hopeless without further
assumptions, we assume that D(p∗, p̃) ≤ ε for some distance D, and that p∗ lies in some family G.

For now we continue to take D = TV and focus on more general losses L, corresponding to tasks beyond
mean estimation. Two key examples will be:

• Second moment estimation in spectral norm, which corresponds to the loss L(p, S) = ‖Ep[XX>]−
S‖.

• Linear regression, which corresponds to the loss L(p, θ) = Ex,y∼p[(y− θ>x)2− (y− θ∗(p)>x)2]. Note
that here L measures the excess predictive loss so that L(p, θ∗(p)) = 0.

As in the mean estimation case, we will define the modulus of continuity and the family of resilience
distributions, and derive sufficient conditions for resilience.

Modulus of continuity. The modulus of continuity generalizes straightforwardly from the mean estimation
case. We define

m(G, 2ε, L) = sup
p,q∈G:TV(p,q)≤2ε

L(p, θ∗(q)). (172)

As before, the modulus m upper-bounds the minimax loss. Specifically, consider the projection estimator that
outputs θ̂(p̃) = θ∗(q) for any q ∈ G with TV(p̃, q) ≤ ε. Then the error of θ̂ is at most m because TV(q, p∗) ≤ 2ε
and p∗, q ∈ G.

Resilience. Generalizing resilience requires more care. Recall that for mean estimation the set of (ρ, ε)-
resilient distributions was

GTVmean(ρ, ε)
def
=
{
p | ‖Er[X]− Ep[X]‖ ≤ ρ for all r ≤ p

1− ε
}
. (173)

We saw in Section 2.4 that robust mean estimation is possible for the family Gmean of resilient distributions; the
two key ingredients were the existence of a midpoint distribution and the triangle inequality for L(p, θ∗(q)) =
‖µp − µq‖. We now extend the definition of resilience to arbitrary cost functions L(p, θ) that may not satisfy
the triangle inequality. The general definition below imposes two conditions: (1) the parameter θ∗(p) should
do well on all distributions r ≤ p

1−ε , and (2) any parameter that does well on some r ≤ p
1−ε also does well on

p. We measure performance on r with a bridge function B(r, θ), which is often the same as the loss L but
need not be.

Definition 3.1 (GTV(ρ1, ρ2, ε)). Given an arbitrary loss function L(p, θ), we define GTV(ρ1, ρ2, ε) = GTV↓ (ρ1, ε)∩
GTV↑ (ρ1, ρ2, ε), where:

GTV↓ (ρ1, ε) , {p | sup
r≤ p

1−ε

B(r, θ∗(p)) ≤ ρ1}, (174)

GTV↑ (ρ1, ρ2, ε) , {p | for all θ, r ≤ p

1− ε
, (B(r, θ) ≤ ρ1 ⇒ L(p, θ) ≤ ρ2)}, (175)

The function B(p, θ) is an arbitrary cost function that serves the purpose of bridging.

If we take B(p, θ) = L(p, θ) = ‖Ep[X]− Eθ[X]‖, ρ2 = 2ρ1, then this exactly reduces to the resilient set
GTVmean(ρ1, ε) for mean estimation. To see the reduction, note that GTVmean is equivalent to GTV↓ in Equation

(174). Thus we only need to show that GTV↑ is a subset of GTV↓ . By our choice of B,L and ρ2, the implication

condition in GTV↑ follows from the triangle inequality..

We will show that GTV is not too big by bounding its modulus of continuity, and that it is not too small
by exhibiting reasonable sufficient conditions for resilience.
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p1 p2
TV(p1, p2) ≤ η

r = min(p1,p2)
1−TV(p1,p2)

r ≤ p1
1−η r ≤ p2

1−η

p1 ∈ GTV↓ B(r, θ∗(p1)) ≤ ρ1 L(p2, θ
∗(p1)) ≤ ρ2

p2 ∈ GTV↑

Figure 7: Midpoint distribution helps bridge the modulus for GTV.

Not too big: bounding m. We show that the designed GTV(ρ1, ρ2, ε) has small modulus of continuity
(and thus population minimax limit) in the following theorem:

Theorem 3.2. For GTV(ρ1, ρ2, ε) in Definition 3.1, we have m(GTV(ρ1, ρ2, ε), ε) ≤ ρ2.

Proof. As illustrated in Figure 7, we still rely on the midpoint distribution r to bridge the modulus. Consider
any p1, p2 satisfying TV(p1, p2) ≤ ε. Then there is a midpoint r such that r ≤ p1

1−ε and r ≤ p2
1−ε . From

the fact that p1 ∈ GTV(ρ1, ρ2, ε) ⊂ GTV↓ (ρ1, ε), we have B(r, θ∗(p1)) ≤ ρ1. From this and the fact that

p2 ∈ GTV(ρ1, ρ2, ε) ⊂ GTV↑ (ρ1, ρ2, ε), we then have L(p2, θ
∗(p1)) ≤ ρ2. Since p1 and p2 are arbitrary, this

bounds the modulus of continuity by ρ2.

Not too small: concrete examples. We next show that GTV yields sensible conditions for second moment
estimation and linear regression. We start with second moment estimation:

Proposition 3.3. Let B(p, S) = L(p, S) = ‖Ep[XX>] − S‖, and let p be a distribution on Rd such that
p ∈ Gmom,k)(σ), i.e. p∗ has bounded kth moments. Then assuming k > 2, we have p ∈ GTV(ρ, 2ρ, ε) for
ρ = O(σ2ε1−2/k).

This is essentially the same statement as for mean estimation, except with σ2ε1−2/k instead of σε1−1/k.

Proof. First we show that p ∈ G↓(ρ, ε), for which we need to show that

‖Er[XX>]− Ep[XX>]‖ ≤ ρ for all r ≤ p

1− ε
. (176)

Letting Y = XX>, this asks that Y is resilient in operator norm, which in turn asks that 〈Y,Z〉 is resilient for
any ‖Z‖∗ ≤ 1, where ‖ · ‖∗ is dual to the operator norm. Recalling that the operator norm is the maximum
singular value, it turns out that ‖ · ‖∗ is the nuclear norm, or the sum of the singular values. Thus for
Z = UΛV > we have ‖Z‖∗ =

∑
i Λii. (Proving this duality requires some non-trivial but very useful matrix

inequalities that we provide at the end of this section.)
Conveniently, the extreme points of the nuclear norm ball are exactly rank-one matrices of the form

±vv> where ‖v‖2 = 1. Thus we exactly need that 〈v,X〉2 is resilience for all v. Fortunately we have that
E[|〈v,X〉2 − E[〈v,X〉2]|k/2] ≤ E[|〈v,X〉|k] ≤ σk, so p is (ρ1, ε)-resilient with ρ1 = σ2ε1−2/k, which gives that
p ∈ G↓.

Next we need to show that p ∈ G↑. We want

‖Er[XX>]− S‖ ≤ ρ1 =⇒ ‖Ep[XX>]− S‖ ≤ ρ2 whenever r ≤ p

1− ε
, (177)

but this is the same as ρ2 − ρ1 ≤ ‖Er[XX>]− Ep[XX>]‖, and we already know that the right-hand-side is
bounded by ρ1, so we can take ρ2 = 2ρ1, which proves the claimed result.

We move on to linear regression. In the proof for second moment estimation, we saw that p ∈ G↑ was
essentially implied by p ∈ G↓. This was due to the symmetry of the second moment loss together with the
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triangle inequality for ‖ · ‖, two properties that we don’t have in general. The proof for second moment
estimation will require somewhat more different proofs for G↑ and G↓. For simplicity we state the result only
for fourth moments:

Proposition 3.4. For a distribution p on Rd×R, let B(p, θ) = L(p, θ) = Ep[(y−〈θ, x〉)2− (y−〈θ∗(p), x〉)2].
Let Z = Y − 〈θ∗(p), X〉 and suppose that the following two conditions holds:

Ep[XZ2X>] � σ2E[XX>], (178)

Ep[〈X, v〉4] ≤ κEp[〈X, v〉2]2 for all v. (179)

Then p ∈ GTV(ρ, 5ρ, ε) for ρ = 2σ2ε as long as ε(κ− 1) ≤ 1
6 and ε ≤ 1

8 .

Let us interpret the two conditions. First, as long as X and Z are independent (covariates are independent
of noise), we have Ep[XZ2X>] = E[Z2]E[XX>], so in that case σ2 is exactly a bound on the noise Z. Even
when X and Z are not independent, the first condition holds when Z has bounded 4th moment.

The second condition is a hypercontractivity condition stating that the fourth moments of X should not
be too large compared to the second moments. It is a bit unusual from the perspective of mean estimation,
because it does not require X to be well-concentrated, but only well-concentrated relative to its variance. For
regression, this condition makes sense because κ bounds how close the covariates are to being rank-deficient
(the worst-case is roughly an ε-mass at some arbitrary distance t/

√
ε, which would have second moment t2

and fourth moment t4/ε, so we roughly want κ < 1/ε). We will show later that such a hypercontractivity
condition is needed, i.e. simply assuming sub-Gaussianity (without making it relative to the variance) allows
for distributions that are hard to robustly estimate due to the rank-deficiency issue.

Proof. First note that L(p, θ) = (θ− θ∗(p))>Sp(θ− θ∗(p)), where Sp = Ep[XX>], and analogously for L(r, θ).
At a high level our strategy will be to show that θ∗(r) ≈ θ∗(p) and Sr ≈ Sp, and then use this to establish
membership in G↓ and G↑.

We first use the hypercontractivity condition to show that Sr ≈ Sp. We have

Er[〈v,X〉2] ≥ Ep[〈v,X〉2]− 1

1− ε

√
εVarp[〈v,X〉2] (180)

= Ep[〈v,X〉2]− 1

1− ε

√
ε(Ep[〈v,X〉4]− Ep[〈v,X〉2]2) (181)

≥ Ep[〈v,X〉2]− 1

1− ε
√
ε(κ− 1)Ep[〈v,X〉2] (182)

= (1− 1

1− ε
√
ε(κ− 1))Ep[〈v,X〉2]. (183)

Thus Sr � (1− 1
1−ε

√
ε(κ− 1))Sp, and similarly Sr � (1+ 1

1−ε

√
ε(κ− 1))Sp. Assuming ε ≤ 1

8 and ε(κ−1) ≤ 1
6 ,

we have 1
1−ε

√
ε(κ− 1) ≤ 8

7

√
1/6 < 1

2 , and so 1
2Sp � Sr �

3
2Sp.

We now turn to G↑ and G↓. A useful relation is θ∗(p) = S−1
p Ep[XY ], and θ∗(r) − θ∗(p) = S−1

r Er[XZ].

To prove that p ∈ G↓ we need to show that (θ∗(r)− θ∗(p))>Sr(θ∗(r)− θ∗(p)) is small. We have

(θ∗(r)− θ∗(p))>Sr(θ∗(r)− θ∗(p)) ≤
3

2
(θ∗(r)− θ∗(p))>Sp(θ∗(r)− θ∗(p)) (184)

=
3

2
Er[XZ]>S−1

p Er[XZ] =
3

2
‖Er[S−1/2

p XZ]− Ep[S−1/2
p XZ]‖22. (185)

This final condition calls for S
−1/2
p XZ to be resilient, and bounded variance of this distribution can be seen to

exactly correspond to the condition E[XZ2X>] � σ2E[XX>]. Thus we have resilience with ρ = 3σ2ε
2(1−ε)2 ≤ 2σ2ε

(since ε < 1
8 ).

Now we turn to G↑. We want that (θ − θ∗(r))>Sr(θ − θ∗(r)) ≤ ρ implies (θ − θ∗(p))>Sp(θ − θ∗(p)) ≤ 5ρ.
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By the triangle inequality we have√
(θ − θ∗(p))>Sp(θ − θ∗(p)) ≤

√
(θ − θ∗(r))>Sp(θ − θ∗(r)) +

√
(θ∗(r)− θ∗(p))>Sp(θ∗(r)− θ∗(p)) (186)

≤
√

2(θ − θ∗(r))>Sr(θ − θ∗(r)) +
√

(4/3)σ2ε (187)

≤
√

2ρ+
√

(4/3)σ2ε =
√
ρ(
√

2 +
√

2/3) ≤
√

5ρ, (188)

which completes the proof.

Lower bound. TBD

Proving that nuclear norm is dual to operator norm. Here we establish a series of matrix inequalities
that are useful more broadly, and use these to analyze the nuclear norm. The first allows us to reduce dot
products of arbitrary matrices to symmetric PSD matrices:

Proposition 3.5. For any (rectangular) matrices A, B of equal dimensions, we have

〈A,B〉2 ≤ 〈(A>A)1/2, (B>B)1/2〉〈(AA>)1/2, (BB>)1/2〉. (189)

In a sense, this is like a “matrix Cauchy-Schwarz”.

Proof. We first observe that

[
(AA>)1/2 A

A> (A>A)1/2

]
� 0. This is because, if A = UΛV > is the singular

value decomposition, we can write the above matrix as

[
UΛU> UΛV >

V ΛU> V ΛV >

]
, which is PSD because it can be

factorized as [U ;V ]Λ[U ;V ]>. More generally this is true if we multiply (AA>)1/2 by λ and (A>A)1/2 by 1
λ .

We therefore have 〈[
λ(AA>)1/2 A

A> 1
λ (A>A)1/2

]
,

[
λ(BB>)1/2 −B
−B> 1

λ (B>B)1/2

]〉
≥ 0, (190)

since both terms in the inner product are PSD. This gives λ2〈(AA>)1/2, (BB>)1/2〉+ 1
λ2 〈(A>A)1/2, (B>B)1/2〉 ≥

2〈A,B〉. Optimizing λ yields the claimed result.

Next we show:

Theorem 3.6. If A and B are matrices of the same dimensions with (sorted) lists of singular values
σ1, . . . , σn and τ1, . . . , τn, then

〈A,B〉 ≤
n∑
i=1

σiτi. (191)

This says that the dot product between two matrices is bounded by the dot product between their sorted
singular values.

Proof. By Proposition 3.5, it suffices to show this in the case that A and B are both PSD and σ, τ are the
eigenvalues. Actually we will only need A and B to be symmetric (which implies that, oddly, the inequality
can hold even if some of the σi and τi are negative).

By taking similarity transforms we can assume without loss of generality that A = diag(σ1, . . . , σn) with
σ1 ≥ σ2 ≥ · · · ≥ σn. We thus wish to prove that

∑n
i=1 σiBii ≤

∑n
i=1 σiτi, where τi are the eigenvalues of B.

We make use of the following lemma:

Lemma 3.7. For all 1 ≤ k ≤ n, we have
∑k
i=1Bii ≤

∑k
i=1 τi.
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Proof. Let Bk be the k × k top-left submatrix of B. Then
∑k
i=1Bii = tr(Bk) is the sum of the eigenvalues

of Bk. We will show that the jth largest eigenvalue of Bk is smaller than the jth largest eigenvalue of B
(this is a special case of the Cauchy interlacing theorem). We prove this using the min-max formulation of
eigenvalues: λi(M) = minW :dim(W )=i−1 maxv∈W⊥,‖v‖2≤1 v

>Mv. Let W ∗ be the W that attains the min for
λj(B), and let Pk denote projection onto the first k coordinates. We have

λj(Bk) = min
W :dim(W )=i−1

max
v∈W⊥:‖v‖2≤1

v>Bkv (192)

≤ max
v∈(W∗)⊥:‖v‖2≤1

(Pkv)>Bk(Pkv) (193)

≤ max
v∈(W∗)⊥:‖v‖2≤1

v>Bv = λj(B), (194)

which proves the lemma.

Now with the lemma in hand we observe that, if we let σn+1 = 0 for convenience, we have

n∑
i=1

σiBii =

n∑
i=1

(σi − σi+1)(B11 + · · ·+Bii) (195)

≤
n∑
i=1

(σi − σi+1)(τ1 + · · ·+ τi) (196)

=

n∑
i=1

σiτi, (197)

which yields the desired result. In the above algebra we have used Abel summation, which is the discrete
version of integration by parts.

Now that we have Theorem 3.6 in hand, we can easily analyze the operator and nuclear norms. Letting
~σ(A) denote the vector of non-decreasing singular values of A, we have

〈Y,Z〉 ≤ 〈~σ(Y ), ~σ(Z)〉 ≤ ‖~σ(Y )‖∞‖~σ(Z)‖1. (198)

This shows that the dual of the operator norm is at most the nuclear norm, since ‖~σ(Z)‖1 is the nuclear
norm of Z. But we can achieve equality when Y = UΛV > by taking Z = u1v

>
1 (then ‖Z‖∗ = 1 while

〈Y,Z〉 = Λ11 = ‖Y ‖). So operator and nuclear norm are indeed dual to each other.

[Lecture 12]

3.1 Efficient Algorithm for Robust Regression

We now turn to the question of efficient algorithms, focusing on linear regression (we will address finite-sample
issues later). Recall that information-theoretically, we found that two conditions are sufficient to imply
resilience:

• Hypercontractivity: For all v, Ex∼p[〈x, v〉4] ≤ κEx∼p[〈x, v〉2]2.

• Bounded noise: Ex∼p[xz2x>] � σ2Ex∼p[xx>].

As for mean estimation under bounded covariance, our strategy will be to write down a non-convex optimization
problem that tries to find small κ and σ, then show that this problem can be approximately solved. Specifically,
let

F1(q) = sup
v

Ex∼q[〈x, v〉4]

Ex∼q[〈x, v〉2]2
, and (199)

F2(q) = sup
v

Ex∼q[〈x, v〉2(y − 〈θ(q), x〉)2]

Ex∼q[〈x, v〉2]
. (200)
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Then we seek to find a q such that F1(q) ≤ κ, F2(q) ≤ σ2, and q ∈ ∆n,ε, where ∆n,ε is the set of ε-deletions
of p.

However, there are a couple wrinkles. While with mean estimation we could minimize the objective with
gradient descent, in this case we will need to use quasigradient descent–following a direction that is not the
gradient, but that we can show makes progress towards the optimum. The rough reason for this is that, since
p appears on both the left- and right-hand sides of the inequalities above, the gradients become quite messy,
e.g. ∇F1(q) has a mix of positive and negative terms:

∇F1(q)i =
〈xi, v〉4

Ex∼q[〈x, v〉2]2
− 2

Eq[〈x, v〉4]〈xi, v〉2

Eq[〈x, v〉2]3
, (201)

and it isn’t clear that following them will not land us at bad local minima. To address this, we instead
construct a simpler quasigradient for F1 and F2:

g1(xi; q) = 〈xi, v〉4, where v = arg max
‖v‖2=1

Eq[〈x, v〉4]

Eq[〈x, v〉2]2
, (202)

g2(xi; q) = 〈xi, v〉2(yi − 〈θ∗(q), xi〉)2, where v = arg max
‖v‖2=1

Eq[〈x, v〉2(y − 〈θ∗(q), x〉)2]

Eq[〈x, v〉2]
. (203)

We will then follow g1 until F1 is small, and then follow g2 until F2 is small.
The other wrinkle is that computationally, the hypercontractivity condition is difficult to certify, because

it involves maximizing
Ep[〈x,v〉4]
Ep[〈x,v〉2]2 , which is no longer a straightforward eigenvalue problem as in the mean

estimation case. We’ve already seen this sort of difficulty before–for norms beyond the `2-norm, we had to use
SDP relaxations and Grothendieck’s inequality in order to get a constant factor relaxation. Here, there is also
an SDP relaxation called the sum-of-squares relaxation, but it doesn’t always give a constant factor relaxation.
We’ll mostly ignore this issue and assume that we can find the maximizing v for hypercontractivity.

We are now ready to define our efficient algorithm for linear regression, Algorithm 4. It is closely analogous
to the algorithm for mean estimation (Algorithm 2), but specifies the gradient steps more explicitly.

Algorithm 4 QuasigradientDescentLinReg

1: Input: (x1, y1), . . . , (xn, yn) ∈ Rd × R.
2: Initialize q ∈ ∆n,ε arbitrarily.
3: while F1(q) ≥ 2κ or F2(q) ≥ 4σ2 do
4: if F1(q) ≥ 2κ then
5: Find the unit vector v that maximizes Eq[〈x, v〉4]/Eq[〈x, v〉2]2.
6: Take a projected gradient step in the direction (g1)i = 〈xi, v〉4.
7: else
8: Compute the empirical least squares regressor: θ∗(q) = (

∑n
i=1 qixix

>
i )−1(

∑n
i=1 qixiyi).

9: Find the unit vector v that maximizes Eq[〈x, v〉2(y − 〈θ∗(q)x〉)2]/Eq[〈x, v〉2].
10: Take a projected gradient step in the direction (g2)i = 〈xi, v〉2(yi − 〈θ∗(q), xi〉)2.
11: end if
12: end while
13: Output θ∗(q).

Analyzing Algorithm 4 enjoys the following loss bound:

Proposition 3.8. Suppose that a set S of (1− ε)n of the xi satisfy:

EpS [〈x, v〉4] ≤ κEpS [〈x, v〉2]2 ∀v ∈ Rd, and EpS [(y − 〈θ∗(pS), x〉)2xx>] � σ2EpS [xx>]. (204)

Then assuming κε ≤ 1
80 , Algorithm 4 terminates and its output has excess loss L(pS , θ

∗(q)) ≤ 40σ2ε.

To prove Proposition 3.8, we need a few ideas. The first is a result from optimization justifying the use of
the quasigradients:
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Lemma 3.9 (Informal). Asymptotically, the iterates of Algorithm 4 (or any other low-regret algorithm)
satisfy the conditions

EX∼q[gj(X; q)] ≤ EX∼pS [gj(X; q)] for j = 1, 2. (205)

We will establish this more formally later, and for now assume that (205) holds. Then, asuming this,
we will show that q is both hypercontractive and has bounded noise with constants κ′, σ′ that are only a
constant factor worse than κ and σ.

First, we will show this for hypercontractivity:

Lemma 3.10. Suppose that EX∼q[g1(X; q)] ≤ EX∼pS [g1(X; q)] and that κε ≤ 1
80 . Then q is hypercontractive

with parameter κ′ = 1.5κ.

Proof. Take the maximizing v such that g1(xi; q) = 〈xi, v〉4. To establish hypercontractivity, we want to
show that Eq[〈x, v〉4] is small while Eq[〈x, v〉2]2 is large. Note the quasigradient condition gives us that
Eq[〈x, v〉4] ≤ EpS [〈x, v〉4]; so we will mainly focus on showing that Eq[〈x, v〉2] is large, and in fact not much
smaller than EpS [〈x, v〉2]. Specifically, by the fact that TV(q, pS) ≤ ε

1−ε , together with resilience applied to

〈x, v〉2, we have

|Eq[〈x, v〉2]− EpS [〈x, v〉2]| ≤
( ε

(1− 2ε)2
(Eq[〈x, v〉4] + EpS [〈x, v〉4])

) 1
2

(206)

(i)

≤
( 2ε

(1− 2ε)2
EpS [〈x, v〉4]

) 1
2

(207)

(ii)

≤
( 2κε

(1− 2ε)2

) 1
2EpS [〈x, v〉2], (208)

where (i) uses the quasigradient condition and (ii) uses hypercontractivity for pS . Now assuming that
κε ≤ 1

80 (and hence also ε ≤ 1
80 ), the coefficient on the right-hand-side is at most

√
(1/40)/(1− 1/40)2 < 1

6 .
Consequently |Eq[〈x, v〉2]− EpS [〈x, v〉]2| ≤ 1

6EpS [〈x, v〉2], and re-arranging then yields

Eq[〈x, v〉2] ≥ 5

6
EpS [〈x, v〉2]. (209)

But we already have Eq[〈x, v〉4] ≤ EpS [〈x, v〉2], and so the ratio Eq[〈x, v〉2]/Eq[〈x, v〉2]2 is at most (6/5)2 the
same ratio under pS , and in particular at most (6/5)2κ ≤ 1.5κ.

Next, we will show this for bounded noise assuming that hypercontractivity holds:

Lemma 3.11. Suppose that F1(q) ≤ 2κ and that EX∼q[g2(X; q)] ≤ EX∼pS [g2(X; q)], and that κε ≤ 1
80 . Then

q has bounded noise with parameter (σ′)2 = 4σ2, and furthermore satisfies L(pS , θ
∗(q)) ≤ 40σ2ε.

Proof. Again take the maximizing v such that g2(xi; q) = 〈xi, v〉2(yi − 〈θ∗(q), xi〉)2. We want to show that q
has bounded noise, or in other words that Eq[g2(x; q)] is small relative to Eq[〈x, v〉2]. By the quasigradient
assumption, we have

Eq[g2(x; q)] + Eq[〈x, v〉2(y − 〈θ∗(q), x〉)2] (210)

≤ EpS [〈x, v〉2(y − 〈θ∗(q), x〉)2]. (211)

Intuitively, we want to use the bounded noise condition for pS to upper-bound the right-hand-side. The
problem is that the term inside the expectation contains θ∗(q), rather than θ∗(pS). But we can handle this
using the AM-RMS inequality. Specifically, we have

EpS [〈x, v〉2(y − 〈θ∗(q), x〉)2] ≤ 2
(
EpS [〈x, v〉2(y − 〈θ∗(pS), x〉)2]︸ ︷︷ ︸

(a)

+EpS [〈x, v〉2〈θ∗(q)− θ∗(pS), x〉2]︸ ︷︷ ︸
(b)

)
. (212)

We will bound (a) and (b) in turn. To bound (a) note that by the bounded noise condition we simply have
(a) ≤ σ2EpS [〈x, v〉2].
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To bound (b), let R = EpS [〈θ∗(q)− θ∗(pS), x〉2] = L(pS , θ
∗(q)) be the excess loss of θ∗(q) under pS . We

will upper-bound (b) in terms of R, and then apply resilience to get a bound for R in terms of itself. Solving
the resulting inequality will provide an absolute bound on R and hence also on (b).

More specifically, we have

EpS [〈x, v〉2〈θ∗(q)− θ∗(pS), x〉2]
(i)

≤
(
EpS [〈x, v〉4

)1/4(
EpS [〈θ∗(q)− θ∗(pS), x〉4]

)1/2

(213)

(ii)

≤ κ
(
EpS [〈x, v〉2]

)(
EpS [〈θ∗(q)− θ∗(pS), x〉2

)
(214)

= κREpS [〈x, v〉2]. (215)

Here (i) is Cauchy-Schwarz and (ii) invokes hypercontractivity of pS . Combining the bounds on (a) and (b)
and plugging back in to (212), we obtain

EpS [〈x, v〉2(y − 〈θ∗(q), x〉)2] ≤ 2(σ2 + κR)EpS [〈x, v〉2]. (216)

Remember that we would like a bound such as the above, but with expectations taken with respect to q
instead of pS . For the left-hand-side, we can directly move to Eq[·] using the quasigradient assumption. For
the right-hand-side, since F1(q) ≤ 2κ, the same argument as in (206)-(209) yields (with modified constants)
that Eq[〈x, v〉2] ≥ 4

5EpS [〈x, v〉2]. Applying both of these, we have that

Eq[〈x, v〉2(y − 〈θ∗(q), x〉)2] ≤ 2.5(σ2 + κR)Eq[〈x, v〉2]. (217)

This establishes bounded noise with parameter (σ′)2 = 2.5(σ2 + κR). By assumption, we also have
hypercontractivity with parameter κ′ = 2κ. We are not yet done, because we do not know R. But
recall that R is the excess loss, and so by the resilience conditions for linear regression (Proposition 3.4) we
have

R ≤ 5ρ(κ′, σ′) ≤ 10(σ′)2ε = 25(σ2 + κR)ε, (218)

as long as ε ≤ 1
8 and κ′ε = 2κε ≤ 1

6 . Re-arranging, we have

R ≤ 25σ2ε

1− 25κε
≤ 40σ2ε, (219)

since κε ≤ 1
80 . Plugging back into σ′, we also have (σ′)2 ≤ 2.5σ2(1 + 40κε) ≤ 4σ2, as claimed.

Quasigradient bounds via low-regret algorithms. Combining Lemmas 3.9, 3.10, and 3.11 together
yields Proposition 3.8. However, we still need to formalize Lemma 3.9, showing that we can drive the
quasigradients to be small. We can do so with the idea of low-regret online optimization algorithms.

An online optimization algorithm is one that takes a sequence of losses `1(·), `2(·) rather than a fixed loss
`. In traditional optimization, we have a single ` with parameter w, and seek to produce iterates w1, w2, . . .
such that `(wT )− `(w∗)→ 0 as T →∞. In online optimization algorithms, we instead consider the regret,
defined as

RegretT = max
w

1

T

T∑
t=1

`t(wt)− `t(w). (220)

This is the average excess loss compared to the best fixed w, picked in hindsight. We then seek to produce
iterates wt such that RegretT → 0 as T → ∞. Note that when `t = ` is fixed for all t, this is exactly the
same as traditional optimization.

Remarkably, for most “nice” loss functions `t, it is possible to ensure that RegretT → 0; in fact, projected
gradient descent with an appropriate step size will achieve this.

How does this relate to quasigradients? For any quasigradient g(X; q), define the loss function `t(q) =
Ex∼q[g(x; qt)]. Even though this loss depends on qt, the regret is well-defined:

RegretT = max
q′

1

T
Ex∼qt [g(x; qt)]− Ex∼q′ [g(x; qt)] ≥

1

T
Ex∼qt [g(x; qt)]− Ex∼pS [g(x; qt)]. (221)
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In particular, as long as RegretT → 0, we asymptotically have that 1
T

∑T
t=1 Ex∼qt [g(x; qt)] ≤

∑T
t=1 Ex∼pS [g(x; qt)],

so eventually the quasigradient bound Ex∼q[g(x; q)] ≤ Ex∼pS [g(x; q)] must (almost) hold for one of the qt.
This is enough to show that, for any fixed quasigradient, a statement such as Lemma 3.9 holds4. However,

we want both g1 and g2 to be small simultaneously.
There are two ways to handle this. The first, crude way is to first use g1 until we have hypercontractivity,

then take the resulting q as our new p̃ (so that we restrict to ε-deletions of q) and running gradient descent
with g2 until we have bounded noise. This uses the fact that ε-deletions of hypercontractive distributions are
still hypercontractive, but yields worse constants (since we need 2ε-deletions instead of ε-deletions).

A slicker approach is to alternate between g1 and g2 as in Algorithm 4. Note that we then still
(asymptotically) have

1

T

T∑
t=1

Ex∼qt [gjt(x; qt)] ≤
T∑
t=1

Ex∼pS [gjt(x; qt)], (222)

where jt ∈ {1, 2} denotes the choice of quasigradient at iteration t of Algorithm 4.
Next note that asymptotically, only a vanishingly small fraction of jt can equal 1, since we only take

quasigradient steps in g1 when F1(q) ≥ 2κ, and in these cases Eqt [g1(x; qt)] is quite a bit larger than
EpS [g1(x; qt)], since if they were equal we would have F1(q) ≤ 1.5κ. Therefore, eventually almost all of the
quasigradient steps are with respect to g2, and so low regret of the entire sum implies low regret of g2. We
therefore both have F1(qt) ≤ 2κ and the quasigradient condition for g2:

Lemma 3.12 (Formal version of Lemma 3.9). Suppose that |g1(xi, q)| ≤ B and |g2(xi, q)| ≤ B for all i,
where B is at most polynomially-large in the problem parameters. Then for any δ, within polynomially many
steps Algorithm 4 generates an iterate qt such that F1(qt) ≤ 2κ and Egt [g2(x, qt)] ≤ EpS [g2(x, qt)] + δ.

Combining Lemma 3.9 with Lemma 3.11 then yields the desired Proposition 3.8.

[Lectures 13-14]

4 Resilience Beyond TV Distance

We now turn our attention to distances other than the distance D = TV that we have considered so far. The
family of distances we will consider are called Wasserstein distances. Given a cost function c(x, y) (which is
usually assumed to be a metric), we define the distance Wc(p, q) between two distributions p and q as

Wc(p, q) = inf
π

Ex,y∼π[c(x, y)] (223)

subject to

∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y). (224)

This definition is a bit abstruse so let us unpack it. The decision variable π is called a coupling between p
and q, and can be thought of as a way of matching points in p with points in q (π(x, y) is the amount of
mass in p(x) that is matched to q(y)). The Wasserstein distance is then the minimum cost coupling (i.e.,
minimum cost matching) between p and q. Some special cases include:

• c(x, y) = I[x 6= y]. Then Wc is the total variation distance, with the optimal coupling being π(x, x) =
min(p(x), q(x)) (the off-diagonal π(x, y) can be arbitrary as long as the total mass adds up correctly).

• c(x, y) = ‖x− y‖2. Then Wc is the earth-mover distance—the average amount that we need to move
points around to “move” p to q.

• c(x, y) = ‖x− y‖0. Then Wc is the average number of coordinates we need to change to move p to q.

• c(x, y) = ‖x− y‖α2 , for α ∈ [0, 1]. This is still a metric and interpolates between TV and earthmover
distance.

4 We have to be a bit careful because outliers could make g(x; q) arbitrarily large, which violates the assumptions needed to
achieve low regret. This can be addressed with a pre-filtering step that removes data points that are obviously too large to be
inliers, but we will not worry about this here.
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There are a couple key properties of Wasserstein distance we will want to use. The first is that Wc is a metric
if c is:

Proposition 4.1. Suppose that c is a metric. Then Wc is also a metric.

Proof. TBD

The second, called Kantorovich-Rubinstein duality, provides an alternate definition of Wc distance in
terms of functions that are Lipschitz under c, meaning that |f(x)− f(y)| ≤ c(x, y).

Theorem 4.2 (Kantorovich-Rubinstein). Call a function f Lipschitz in c if |f(x)− f(y)| ≤ c(x, y) for all
x, y, and let L(c) denote the space of such functions. If c is a metric, then we have

Wc(p, q) = sup
f∈L(c)

Ex∼p[f(x)]− Ex∼q[f(x)]. (225)

As a special case, take c(x, y) = I[x 6= y] (corresponding to TV distance). Then f ∈ L(c) if and only if
|f(x)− f(y)| ≤ 1 for all x 6= y. By translating f , we can equivalently take the supremum over all f mapping
to [0, 1]. This says that

TV(p, q) = sup
f :X→[0,1]

Ep[f(x)]− Eq[f(x)], (226)

which recovers the definition of TV in terms of the maximum difference in probability of any event E.
As another special case, take c(x, y) = ‖x− y‖2. Then the supremum is over all 1-Lipschitz functions (in

the usual sense).
In the next section, we will see how to generalize the definition of resilience to any Wasserstein distance.

4.1 Resilience for Wasserstein distances

We show how to extend the idea of resilience to Wasserstein distances Wc. Recall that for TV distance, we
showed that resilient sets have bounded modulus m; this crucially relied on the midpoint property that any
p1, p2 have a midpoint r obtained via deletions of p1 or p2. In other words, we used the fact that any TV
perturbation can be decomposed into a “friendly” operation (deletion) and its opposite (addition). We think
of deletion as friendlier than addition, as the latter can move the mean arbitrarily far by adding probability
mass at infinity.

To extend this to other Wasserstein distances, we need to identify a similar way of decomposing a
Wasserstein perturbation into a friendly perturbation and its inverse. Unfortunately, deletion is closely tied
to the TV distance in particular. To get around this, we use the following re-interpretation: Deletion is
equivalent to movement towards the mean under TV. More precisely:

µ̂ is a possible mean of an ε-deletion of p if and only if some r with mean µ̂ can be obtained from
p by moving points towards µ̂ with TV distance at most ε.

This is more easily seen in the following diagram:

µp µr
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Here we can equivalently either delete the left tail of p or shift all of its mass to µr; both yield a modified
distribution with the same mean µr. Thus we can more generally say that a perturbation is friendly if it only
moves probability mass towards the mean. This motivates the following definition:

Definition 4.3 (Friendly perturbation). For a distribution p over X , fix a function f : X → R. A distribution
r is an ε-friendly perturbation of p for f under Wc if there is a coupling π between X ∼ p and Y ∼ r such
that:

• The cost (Eπ[c(X,Y )]) is at most ε.

• All points move towards the mean of r: f(Y ) is between f(X) and Er[f(Y )] almost surely.

Note that friendliness is defined only in terms of one-dimensional functions f : X → R; we will see how to
handle higher-dimensional objects later. Intuitively, a friendly perturbation is a distribution r for which there
exists a coupling that ‘squeezes’ p to µr.

The key property of deletion in the TV case was the existence of a midpoint : for any two distributions
that are within ε in TV, one can find another distribution that is an ε-deletion of both distributions. We
would like to show the analogous result for Wc–i.e. that if Wc(p, q) ≤ ε then there exists an r that is an
ε-friendly perturbation of both p and q for the function f .

The intuitive reason this is true is that any coupling between two one-dimensional distributions can be
separated into two stages: in one stage all the mass only moves towards some point, in the other stage all the
mass moves away from that point. This is illustrated in Figure 8.

µp1 µrµr µp2

Figure 8: Illustration of midpoint lemma. For any distributions p1, p2 that are close under Wc, the coupling
between p1 and p2 can be split into couplings πp1,r, πp2,r such that p1, p2 only move towards µr under the
couplings. We do this by “stopping” the movement from p1 to p2 at µr.

To formalize this intuitive argument, we need a mild topological property:

Assumption 4.4 (Intermediate value property). For any x and y and any u with f(x) < u < f(y), there is
some z satisfying f(z) = u and max(c(x, z), c(z, y)) ≤ c(x, y).

This holds for any f if c = I[x 6= y] (TV distance), and for any continuous f if c is a path metric (a metric
with “nice” paths between points, which includes the `2-distance). Under this assumption we can prove the
desired midpoint lemma:

Lemma 4.5 (Midpoint lemma for Wc). Suppose Assumption 4.4 holds. Then for any p1 and p2 such that
Wc(p1, p2) ≤ ε and any f , there exists a distribution r that is an ε-friendly perturbation of both p1 and p2

with respect to f .

Proof. Given any two points x and y, without loss of generality we assume f(x) ≤ f(y). Define

sxy(u) =


min(f(x), f(y)), u ≤ min(f(x), f(y))

u, u ∈ [f(x), f(y)]

max(f(x), f(y)), u ≥ max(f(x), f(y)).

(227)
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If we imagine u increasing from −∞ to +∞, we can think of sxy as a “slider” that tries to be as close to
u as possible while remaining between f(x) and f(y).

By Assumption 4.4, there must exist some point z such that max(c(x, z), c(z, y)) ≤ c(x, y) and f(z) =
sxy(u). Call this point zxy(u).

Given a coupling π(x, y) from p1 to p2, if we map y to zxy(u), we obtain a coupling π1(x, z) to some
distribution r(u), which by construction satisfies the squeezing property, except that it squeezes towards
u rather than towards the mean µ(u) = EX∼r(u)[f(X)]. However, note that u − µ(u) is a continuous,
monotonically non-decreasing function (since u− sxy(u) is non-decreasing) that ranges from −∞ to +∞. It
follows that there is a u∗ with µ(u∗) = u∗. Then the couplings to r(u∗) squeeze towards its mean µ(u∗).

Moreover, E(X,Z)∼π1
[c(X,Z)] ≤ E(X,Y )∼π[c(X,Y )] = Wc(p1, p2). The coupling π1 therefore also has small

enough cost, and so is a friendly perturbation. Similarly, the coupling π2 mapping y to zxy(u∗) satisfies the
squeezing property and has small enough cost by the same argument.

Defining resilience: warm-up. With Lemma 4.5 in hand, we generalize resilience to Wasserstein distances
by saying that a distribution is resilient if Er[f(X)] is close to Ep[f(X)] for every η-friendly perturbation r
and every function f lying within some appropriate family F . For now, we will focus on second moment
estimation under W‖·‖2 (we consider second moment estimation because mean estimation is trivial under
W‖·‖2). This corresponds to the loss function

L(p, S) = ‖Ex∼p[xx>]− S‖. (228)

For notational convenience we also typically denote W‖·‖2 as W1.
For the loss L(p, S), we will take our family F to be all functions of the form fv(x) = 〈x, v〉2 with ‖v‖2 = 1.

Thus we define the (ρ, ε)-resilient distributions under W1 as

GW1
sec (ρ, ε) = {p | |Er[〈x, v〉2]− Ep[〈x, v〉2]| ≤ ρ whenever r is ε-friendly under 〈x, v〉2 and ‖v‖2 = 1}. (229)

Note the twist in the definition of GW1
sec –the allowed r depends on the current choice of v, since friendliness is

specific to the function fv = 〈x, v〉2, which is different from deletions in the TV case.
We will first show that GW1

sec has small modulus, then derive sufficient moment conditions for p to be
(ρ, ε)-resilient.

Proposition 4.6. The set of (ρ, ε)-resilient distributions for W1 has modulus m(GW1
sec (ρ, 2ε), ε) ≤ 2ρ.

Proof. For a distribution q, let Sq = Eq[xx>]. Suppose that p1, p2 ∈ GW1
sec (ρ, ε) and W1(p1, p2) ≤ 2ε. For any

v, by Lemma 4.5, there exists an r that is a (2ε)-friendly perturbation of both p1 and p2 with respect to 〈x, v〉2.
We conclude that |Epi [〈x, v〉2]−Er[〈x, v〉2]| ≤ ρ for i = 1, 2, and hence |Ep1 [〈x, v〉2]−Ep2 [〈x, v〉2]| ≤ 2ρ, which
can be written as |v>(Sp1 − Sp2)v| ≤ 2ρ. Taking the sup over ‖v‖2 = 1 yields ‖Sp1 − Sp2‖ ≤ 2ρ. Since
L(p1, θ

∗(p2)) = ‖Sp1 − Sp2‖, this gives the desired modulus bound.

Sufficient conditions for W1-resilience. Recall that for mean estimation under TV perturbation, any
distribution with bounded ψ-norm was (O(εψ−1(1/ε)), ε)-resilient. In particular, bounded covariance dis-
tributions were (O(

√
ε), ε)-resilient. We have an analogous result for W1-resilience, but with a modified ψ

function:

Proposition 4.7. Let ψ be an Orlicz function, and define ψ̃(x) = xψ(2x). Suppose that X (not X − µ) has
bounded ψ̃-norm: Ep[ψ̃(|v>X|/σ)] ≤ 1 for all unit vectors v. Also assume that the second moment of p is at
most σ2. Then p is (ρ, ε) resilient for ρ = max(σεψ−1( 2σ

ε ), 4ε2 + 2εσ).

Let us interpret Proposition 4.7 before giving the proof. Take for instance ψ(x) = x2. Then Proposition 4.7
asks for the 3rd moment to be bounded by σ3/4. In that case we have ρ = σεψ−1(2σ/ε) =

√
2σ3/2ε1/2. If

the units seem weird, remember that ε has units of distance (before it was unitless) and hence σ3/2ε1/2 has
quadratic units, which matches the second moment estimation task.

More generally, taking ψ(x) = xk, we ask for a (k + 1)st moment bound and get error O(σ1+1/kε1−1/k).
We now turn to proving Proposition 4.7. A helpful auxiliary lemma (here and later) proves a way to use

Orlicz norm bounds:
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Lemma 4.8. Let p and q be two distributions over X , g : X → R be any function, c be a non-negative cost
function, and ψ be an Orlicz function. Then for any coupling πp,q between p and q and any σ > 0 we have

|EX∼p[g(X)]− EY∼q[g(Y )]| ≤ σEπp,q [c(X,Y )]ψ−1

(
Eπp,q

[
c(X,Y )ψ

( |g(X)−g(Y )|
σc(X,Y )

)]
Eπp,q [c(X,Y )]

)
. (230)

Proof. Note that |Ep[g(X)] − Eq[g(Y )]| = |Eπ[g(X) − g(Y )]|. We weight the coupling π by the cost c to
obtain a new probability measure π′(x, y) = c(x, y)π(x, y)/E[c(x, y)]. We apply Jensen’s inequality under π′

as follows:

ψ
(∣∣∣Eπ[g(X)− g(Y )]

σEπ[c(X,Y )]

∣∣∣) = ψ
(∣∣∣Eπ[ c(X,Y )

E[c(X,Y )]
· g(X)− g(Y )

σc(X,Y )

]∣∣∣) (231)

= ψ
(∣∣∣Eπ′[g(X)− g(Y )

σc(X,Y )

]∣∣∣) (232)

≤ Eπ′
[
ψ
( |g(X)− g(Y )|

σc(X,Y )

)]
(233)

= Eπ
[
c(X,Y )ψ

( |g(X)− g(Y )|
σc(X,Y )

)]
/Eπ[c(X,Y )]. (234)

Inverting ψ yields the desired result.

Proof of Proposition 4.7. We apply Lemma 4.8 with q = r an ε-friendly perturbation of p under 〈x, v〉2, and
g = 〈x, v〉2; we will also use cost c′(x, y) = |v>(x− y)|, which satisfies c′(x, y) ≤ c(x, y). Taking π to be the
ε-friendly coupling (under c, not c′) between p and r yields

|Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ σεψ−1

(
Eπ
[
|〈x− y, v〉|ψ

( |〈x,v〉2−〈y,v〉2|
σ|〈x−y,v〉|

)]
ε

)
(235)

= σεψ−1

(
Eπ
[
|〈x− y, v〉|ψ

(
|〈x, v〉+ 〈y, v〉|/σ

)]
ε

)
. (236)

Now we will split into two cases. First, we observe that the worst-case friendly perturbation will either move
all of the 〈x, v〉2 upwards, or all of the 〈x, v〉2 downwards, since otherwise we could take just the upwards part
or just the downwards part and perturb the mean further. In other words, we either have (i) 〈x, v〉2 ≥ 〈y, v〉2
for all (x, y) ∈ supp(π) with x 6= y, or (ii) 〈x, v〉2 ≤ 〈y, v〉2 for all (x, y) ∈ supp(π) with x 6= y. We analyze
each case in turn.

Case (i): y moves downwards. In this case we can use the bounds |〈x− y, v〉| ≤ 2|〈x, v〉| and |〈x+ y, v〉| ≤
2|〈x, v〉| together with (236) to conclude that

|Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ σεψ−1
(
Eπ
[
2|〈x, v〉|ψ

(2|〈x, v〉|
σ

)]
/ε
)

(237)

= σεψ−1
(
Ep
[
2σψ̃

( |〈x, r〉|
σ

)]
/ε
)

(238)

≤ σεψ−1(2σ/ε), (239)

where the final inequality is by bounded Orlicz norm of p.
Case (ii): y moved upwards. In this case by friendliness we have that |〈y, v〉|2 ≤ v>Srv whenever

(x, y) ∈ supp(π) and y 6= x. Thus

|〈x− y, v〉|ψ(|〈x, v〉+ 〈y, v〉|/σ) ≤ |〈x− y, v〉|ψ(2|〈y, v〉|/σ) ≤ |〈x− y, v〉|ψ(2
√
v>Srv/σ). (240)

for all (x, y) ∈ supp(π). Plugging back into (236) yields

|Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ σεψ−1(Eπ[|〈x− y, v〉|ψ(2
√
v>Srv/σ)]/ε) (241)

≤ σεψ−1(ε · ψ(2
√
v>Srv/σ)/ε) (242)

= σε · 2v>Srv/σ = 2ε
√
v>Srv. (243)
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Here the final inequality is because Eπ[|〈x − y, v〉|] ≤ Eπ[c(x, y)] ≤ ε under the coupling. Comparing

the left-hand-side to the final right-hand-side yields |v>Spv − v>Srv| ≤ 2ε
√
v>Srv. Thus defining ∆ =

|v>Spv−v>Srv| and using the fact that v>Spv ≤ σ2, we obtain ∆ ≤ 2ε
√

∆ + σ2, which implies (after solving
the quadratic) that ∆ ≤ 4ε2 + 2εσ.

Thus overall we have |Ep[〈x, v〉2]− Er[〈x, v〉2]| ≤ max(σεψ−1(2σ/ε), 4ε2 + 2εσ), as was to be shown.

4.2 Other Results

Our understanding of robust estimation under Wc distances is still rudimentary. Below are a couple of known
results, but many of these may be improved or extended in the near future (perhaps by you!).

The most straightforward extension is from second moment estimation to kth moment estimation. In that
case instead of using ψ̃(x) = xψ(2x), we use ψ̃(x) = xψ(kxk−1). Essentially the same proof goes through.

We can also extend to more general loss functions L(p, θ), as long as L is a convex function of p for fixed
θ (this holds e.g. for any L(p, θ) = Ex∼p[`(θ;x)], since these loss functions are linear in p and hence also
convex). Here the main challenge is defining an appropriate family F of functions for which to consider
friendly perturbations. For second moment estimation our family F was motivated by the obsevation that
L(p, S) = sup{|Ep[fv(x)]− Eq[fv(x)]| | fv(x) = 〈x, v〉2, ‖v‖2 = 1}, but such linear structure need not hold in
general. But we can still exploit linear structure by looking at subgradients of the loss. In particular, we can
take the Fenchel-Moreau representation

L(p, θ) = sup
f∈Fθ

Ex∼p[f(x)]− L∗(f, θ), (244)

which exists for some Fθ and L∗ whenever L(p, θ) is convex in p. The family Fθ is roughly the family of
subgradients of L(p, θ) as p varies for fixed θ. In this case we obtain conditions G↓ and G↑ as before, asking
that

Er[f(x)]− L∗(f, θ∗(p)) ≤ ρ1 for all f ∈ Fθ∗(p) and ε-friendly r, (↓)

and furthermore

L(p, θ) ≤ ρ2 if for every f ∈ Fθ there is an ε-friendly r such that Er[f(x)]− L∗(f, θ) ≤ ρ1. (↑)

Note that for the second condition (G↓), we allow the perturbation r to depend on the current function f . If
r was fixed this would closely match the old definition, but we can only do that for deletions since in general
even the set of feasible r depends on f .

Using this, we can (after sufficient algebra) derive sufficient conditions for robust linear regression under
W1, for conditions similar to the hypercontractivity condition from before. This will be a challenge problem
on the homework.

Finally, we can define a W̃1 similar to T̃V, but our understanding of it is far more rudimentary. In
particular, known analyses do not seem to yield the correct finite-sample rates (for instance, the rate of
convergence includes an n−1/3 term that seems unlikely to actually exist).

5 Inference under Model Mis-specification

5.1 Model Mis-specification in Generalized Linear Models

5.2 Robust Inference via the Bootstrap

[Lecture 17]

5.3 Robust Inference via Partial Specification

In the previous section we saw how using a non-parametric inference method–the bootstrap–allowed us to
avoid the pitfalls of mis-specified parametric models. Next we will explore a different idea, called partial
specification or robust standard errors. Here we stay within a parametric model, but we derive algebraic
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formulas that hold even when the particular parametric model is wrong, as long as certain “orthogonality
assumptions” are true.

Specifically, we will consider linear regression, deriving standard error estimates via typical parametric
confidence regions as with GLMs. We will see that these are brittle, but that they are primarily brittle
because they implicitly assume that certain equations hold. If we instead explicitly subtitute the right-hand
side of those equations, we get better confidence intervals that hold under fewer assumptions. As a bonus,
we’ll be able to study how linear regression performs under distribution shift.

Starting point: linear response with Gaussian errors. In the simplest setting, suppose that we
completely believe our model:

Y = 〈β,X〉+ Z, where Z ∼ N (0, σ2I). (245)

We observe samples (x1, y1), . . . , (xn, yn) ∼ p. Suppose that we estimate β using the ordinary least squares
estimator:

β̂ = arg min
β

1

n

n∑
i=1

(yi − 〈β, xi〉)2 = (

n∑
i=1

xix
>
i )−1

n∑
i=1

xiyi. (246)

Define S = 1
n

∑n
i=1 xix

>
i . Then since yi = x>i β + zi, we can further write

β̂ = (

n∑
i=1

xix
>
i )−1(

n∑
i=1

xix
>
i β + xizi) (247)

= (nS)−1(nSβ +

n∑
i=1

xizi) (248)

= β +
1

n
S−1

n∑
i=1

xizi. (249)

From this we see that, conditional on the xi, β̂ − β is a zero-mean Gaussian distribution. Its covariance
matrix is given by

1

n2
S−1

n∑
i=1

E[z2
i | xi]xix>i S−1 =

σ2

n
S−1. (250)

Confidence regions. The above calculation shows that the error β̂−β is exactly Gaussian with covariance

matrix σ2

n S
−1 (at least assuming the errors zi are i.i.d. Gaussian). Thus the (parametric) confidence region

for β̂ − β would be an ellipsoid with shape S−1 and radius depending on σ, n, and the significance level α of
the test. As a specific consequence, the standard error for βi is σ

√
(S−1)ii/n. This is the standard error

estimate returned by default in most software packages.
Of course, this all so far rests on the assumption of Gaussian error. Can we do better?

Calculation from moment assumptions. It turns out that our calculation above relied only on condi-
tional moments of the errors, rather than Gaussianity. We will show this explicitly by doing the calculations
more carefully. Re-using steps above, we have that

β̂ − β =
1

n
S−1

n∑
i=1

xizi. (251)

In particular, assuming that the (xi, yi) are i.i.d., we have

E[β̂ − β | x1, . . . , xn] =
1

n
S−1

n∑
i=1

xiE[zi | xi] = S−1b, (252)

where b
def
= 1

n

∑n
i=1 xiE[zi | xi].
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In particular, as long as E[Z | X] = 0 for all X, β̂ is an unbiased estimator for X. In fact, since this only

needs to hold on average, as long as E[ZX] = 0 (covariates uncorrelated with noise) then E[β̂ − β] = 0, and

E[β̂ − β | x1:n] converges to zero as n→∞. This yields an insight that is important more generally:

Orindary least squares yields an unbiased estimate of β whenever the covariates X and noise Z
are uncorrelated.

This partly explains the success of OLS compared to other alternatives (e.g. penalizing the absolute error or
fourth power of the error). While OLS might initially look like the maximum likelihood estimator under
Gaussian errors, it yields consistent estimates of β under much weaker assumptions. Minimizing the fourth
power of the error requires stronger assumptions for consistency, while minimizing the absolute error would
yield a different condition in terms of medians rather than expectations.

Next we turn to the covariance of β̂. Assuming again that the (xi, yi) are independent across i, we have

Cov[β̂ | x1:n] = Cov[
1

n
S−1

n∑
i=1

xizi | x1:n] (253)

=
1

n2
S−1

n∑
i,j=1

xiCov[zi, zj | xi, xj ]x>j S−1 (254)

=
1

n2
S−1

n∑
i=1

xiVar[zi | xi]x>i S−1, (255)

where the final line is because zi, zj are independent for i 6= j. If we define Ω = 1
n

∑n
i=1 xiVar[zi | xi]x>i , then

the final term becomes 1
nS
−1ΩS−1.

This quantity can be upper-bounded under much weaker assumptions than Gaussianity. If we, for instance,

merely assume that Var[zi | xi] ≤ σ2 for all i, then we have that Ω � σ2S and hence Cov[β̂ | x1:n] � σ2

n S
−1.

Even better, this quantity can be estimated from data. Let u2
i = (yi− β̂>xi)2. This is a downward-biased,

but asymptotically unbiased, estimate for Var[zi | xi] (it would be unbiased if we used β instead of β̂).
Therefore, form the matrix

Ω̂n =
1

n

n∑
i=1

xiu
2
ix
>
i . (256)

Then 1
nS
−1Ω̂nS

−1 can be used to generate confidence regions and standard errors. In particular, the standard

error estimate for βi is

√
(S−1Ω̂nS−1)ii/n. This is called the robust standard error or heteroskedacity-

consistent standard error.
There are a couple of simple improvements on this estimate. The first is a “degrees of freedom” correction:

we know that u2
i is downward-biased, and it is more downward-biased the larger the dimension d (because

then β̂ can more easily overfit). We often instead use 1
n−dS

−1Ω̂nS
−1, which corrects for this.

A fancier correction, based on the jacknnife, first corrects the errors ui, via

u′i = ui/(1− κi), with κi =
1

n
x>i S

−1xi.

We obtain a corresponding Ω′n = 1
n

∑n
i=1 xi(u

′
i)

2x>i , and the matrix for the standard errors is

1

n
S−1(Ω′n − ζζ>)S−1, where ζ =

1

n

n∑
i=1

xiu
′
i.

The main difference is that each ui gets a different correction factor 1
1−κi (which is however roughly equal to

n
n−d ) and also that we subtract off the mean ζ. There is some evidence that this more complicated estimator
works better when the sample size is small, see for instance MacKinnon and White (1985).
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Out-of-distribution error. Now suppose that we wish to estimate the error on test samples x̄1:m drawn
from a distribution p̄ 6= p. Start again with the Gaussian assumption that y = β>x+ z.

The expected error on sample x̄i (over test noise z̄i) is σ2 + 〈β̂ − β, x̄i〉2. If we let S̄ = 1
m

∑m
i=1 x̄ix̄

>
i , and

let EZ denote the expectation with respect to the training noise z1, . . . , zn, then the overall average expected
error (conditional on x1:n, x̄1:m) is

σ2 + EZ [
1

m

m∑
i=1

(x̄>i (β − β̂))2] = σ2 + 〈 1

m

m∑
i=1

x̄ix̄
>
i ,EZ [(β − β̂)(β − β̂)>]〉 (257)

= σ2 + 〈S̄, σ
2

n
S−1〉 (258)

+ σ2
(

1 +
1

n
〈S̄, S−1〉

)
. (259)

This shows that the error depends on the divergence between the second moment matrices of p(x) and p̄(x):

• When p(x) = p̄(x), then 〈S̄, S−1〉 = tr(S̄S−1) ≈ tr(I) = d, so the error decays as d
n .

• If S is low-rank and is missing any directions that appear in S̄, then the error is infinite. This makes
sense, as we have no way of estimating β along the missing directions, and we need to be able to
estimate β in those directions to get good error under p̄. We can get non-infinite bounds if we further
assume some norm bound on β; e.g. if ‖β‖2 is bounded then the missing directions only contribute
some finite error.

• On the other hand, if S is full-rank but S̄ is low-rank, then we still achieve finite error. For instance,
suppose that S = I is the identity, and S̄ = d

kP is a projection matrix onto a k-dimensional subspace,

scaled to have trace d. Then we get a sample complexity of d
n , although if we had observed samples

with second moment matrix S̄ at training time, we would have gotten a better sample complexity of k
n .

• In general it is always better for S to be bigger. This is partially an artefact of the noise σ2 being the
same for all X, so we would always rather have X be as far out as possible since it pins down β more
effectively. If the noise was proportional to ‖X‖F (for instance) then the answer would be different.

Robust OOD error estimate. We can also estimate the OOD error even when the Gaussian assumption
doesn’t hold, using the same idea as for robust standard errors. Letting z̄i be the noise for x̄i, the squared
error is then 1

m

∑m
j=1(〈β − β̂, x̄i〉+ z̄i)

2, and computing the expectation given x1:n, x̄1:m yields

E[
1

m

m∑
j=1

(〈β − β̂, x̄i〉+ z̄i)
2 | x1:n, x̄1:m] (260)

=
1

m

m∑
i=1

x̄>i E[(β − β̂)(β − β̂)> | x1:n]x̄i + 2x̄>i E[β − β̂ | x1:n]E[z̄i | xi] + E[z̄2
i | x̄i] (261)

=
〈
S̄, S−1

( 1

n
Ω + bb>

)
S−1

〉
+ 2
〈
b̄, S−1b

〉
+

1

m

m∑
j=1

E[z̄2
i | x̄i]. (262)

To interpret this expression, first assume that the true model is “actually linear”, meaning that b = b̄ = 0.
Then the expression reduces to 1

n 〈S̄, S
−1ΩS−1〉+ 1

m

∑m
j=1 E[z̄2

i | xi]. The second term is the intrinsic variance

in the data, while the first term is similar to the 1
n 〈S̄, S

−1〉 term from before, but accounts for correlation
between X and the variation in Z.

If the model is not actually linear, then we need to decide how to define β (since the optimal β is then
no longer independent of the distribution). In that case a natural choice is to let β be the minimizer under
the training distribution, in which case b→ 0 as n→∞ and thus the 〈b̄, S−1b〉 term conveniently becomes
asymptotically negligible. The twist is that E[z̄2

i | x̄i] now measures not just the intrinsic variance but also
the departure from linearity, and could be quite large if the linear extrapolation away from the training points
ends up being poor.
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Partial specification. In general, we see that we can actually form good estimates of the mean-squared
error on p̄ making only certain moment assumptions (e.g. b = b̄ = 0) rather than needing to assume the
Gaussian model is correct. This idea is called partial specification, where rather than making assumptions that
are stringent enough to specify a parametric family, we make weaker assumptions that are typically insufficient
to even yield a likelihood, but show that our estimates are still valid under those weaker assumptions. The
weaker the assumptions, the more happy we are. Of course b = b̄ = 0 is still fairly strong, but much better
than Gaussianity. The goal of partial specification aligns with our earlier desire to design estimators for the
entire family of resilient distributions, rather than specific parametric classes. We will study other variants of
partial specification later in the course, in the context of clustering algorithms.

[Lecture 18]

5.4 Partial Specification and Agnostic Clustering

We next study the idea of partial specification for clustering. Our setting for clustering will be the following:

• There are k unknown distributions p1, . . . , pk.

• We observe points x1, . . . , xn, such that a fraction αj of the points xi are drawn from pj .

Generally the αj are not known but we have a lower bound on αmin = minkj=1 αj . In clustering we have two
goals:

• Parameter recovery: We wish to estimate some parameter of the pj (usually their means).

• Cluster recovery: We wish to determine for each point xi which cluster pj it was drawn from.

In the simplest setting, we assume that each of the pj has a known parametric form (for instance, each pj is
a Gaussian with unknown mean and variance). In the agnostic setting, we do not assume a parametric form
for the pj but instead only assume e.g. bounded moments. In the robust setting, we allow some fraction ε of
the points to be arbitrary outliers (so α1 + · · ·+ αk = 1− ε).

Partial specification thus corresponds to the agnostic setting. Clustering is a particularly interesting setting
for studying partial specification because some algorithms that work in the simple setting fail completely in
the agnostic setting. Below we will first study the simple setting and give an algorithm based on the method
of moments, then turn our attention to the agnostic setting. In the agnostic setting, resilience will appear
once again as an information-theoretically sufficient condition enabling clustering. Finally, we will turn our
attention to efficient algorithms. In many cases the agnostic algorithms will work even in the robust agnostic
setting.

5.4.1 Clustering Mixtures of Gaussians

Here we assume that each pj = N (µj ,Σj). Thus we can treat each xi as being drawn from p =∑k
j=1 αjN (µj ,Σj). This is a parametric model with parameters (αj , µj ,Σj), so (at least in the limit

of infinite data) a sufficient condition for exact parameter recovery is for the model to be identifiable, meaning

that if
∑k
j=1 αjN (µj ,Σj) =

∑k
j=1 α

′
jN (µ′j ,Σ

′
j), then αj = α′j , µj = µ′j , and Σj = Σ′j .

5

As stated, the model is never identifiable because we can always permute the (αj , µj ,Σj) and obtain an
identical distribution. What we actually care about is identifiability up to permutation: if pα,µ,Σ = pα′,µ′,Σ′

then αj = α′σ(j), µj = µ′σ(j), and Σj = Σ′σ(j) for some permutation σ.
We have the following result:

Proposition 5.1. As long as the orders pairs (µj ,Σj) are all distinct, the parameters (αj , µj ,Σj) are
identifiable up to permutation.

5We also need to worry about the case where k 6= k′, but for simplicity we ignore this.
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Proof. This is equivalent to showing that the functions fµ,Σ(x) defining the pdf of a Gaussian are all linearly
independent (i.e., there is no non-trivial finite combination that yields the zero function). We will start by
showing this in one dimension. So, suppose for the sake of contradiction that

m∑
j=1

cj exp(−(x− µj)2/2σ2
j )/
√

2πσ2 = 0, (263)

where the cj are all non-zero. Then integrating (263) against the function exp(λx) and using the formula for
the moment generating function of a Gaussian, we obtain

m∑
j=1

cj exp(
1

2
σ2
jλ

2 + µjλ) = 0. (264)

Let σmax = maxmj=1 σj , then dividing the above equation by exp( 1
2σ

2
maxλ

2) and taking λ→∞, we see that
only those j such that σj = σmax affect the limit. If S is the set of such indices j, we obtain∑

j∈S
cj exp(µjλ) = 0, (265)

i.e. there is a linear relation between the functions gµj (λ) = exp(µjλ). But this is impossible, because as long
as the µj are distinct, the largest µj will always dominate the limit of the linear relation as λ→∞, and so
we must have cj = 0 for that j, a contradiction.

It remains to extend to the n-dimensional case. Suppose there was a linear relation among the PDFs of
n-dimensional Gaussians with distinct parameters. Then if we project to a random 1-dimensional subspace,
the corresponding marginals (which are linear functions of the n-dimensional PDFs) are also each Gaussian,
and have distinct parameters with probability 1. This is again a contradiction since we already know that
distinct 1-dimensional Gaussians cannot satisfy any non-trivial linear relation.

Proposition 5.1 shows that we can recover the parameters exactly in the limit of infinite data, but it
doesn’t say anything about finite-sample rates. However, asymptotically, as long as the log-likelihood function
is locally quadratic around the true parameters, we can use tools from asymptotic statistics to show that we
approach the true parameters at a 1/

√
n rate.

Recovery from moments. Proposition 5.1 also leaves open the question of efficient computation. In
practice we would probably use k-means or EM, but another algorithm is based on the method of moments.
It has the virtue of being provably efficient, but is highly brittle to mis-specification.

The idea is that the first, second, and third moments give a system of equations that can be solved for
the parameters (α, µ,Σ): letting p =

∑
j αjN (µj ,Σj), we have

Ep[X] =

k∑
j=1

αjµj , (266)

Ep[X ⊗X] =

k∑
j=1

αj(µjµ
>
j + Σj), (267)

Ep[X ⊗X ⊗X] =

k∑
j=1

αj(µ
⊗3
j + 3 Sym(µj ⊗ Σj)), (268)

where Sym(X)i1i2i3 = 1
6 (Xi1i2i3 +Xi1i3i2 +Xi2i1i3 +Xi2i3i1 +Xi3i1i2 +Xi3i2i1).

In d dimensions, this yields d+
(
d+1

2

)
+
(
d+2

3

)
≈ d3/6 equations and k(1 + d+

(
d+1

2

)
) ≈ kd2/2 unknowns.

Thus as long as d > 3k we might hope that these equations have a unique (up to permutation) solution for
(α, µ,Σ). As an even more special case, if we assume that the covariance matrices are all diagonal, then
we only have approximately 2kd unknowns, and the equations have a solution whenever the µj are linearly
independent. We can moreover find this solution via an efficient algorithm called the tensor power method,
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which is a generalization of the power method for matrices, and the rate of convergence is polynomial in k, d,
and the condition number of certain matrices (and decays as 1/

√
n).

However, this method is very brittle—it relies on exact algebraic moment relations of Gaussians, so even
small departures from the assumptions (like moving from Gaussian to sub-Gaussian) will likely break the
algorithm. This is one nice thing about the agnostic clustering setting—it explicitly reveals the brittleness of
algorithms like the one above, and (as we shall see) shows why other algorithms such as k-means are likely to
perform better in practice.

Cluster recovery. An important point is that even in this favorable setting, exact cluster recovery is
impossible. This is because even if the Gaussians are well-separated, there is some small probability that a
sample ends up being near the center of a different Gaussian.

To measure this quantitatively, assume for simplicity that Σj = σ2I for all j (all Gaussians are isotropic
with the same variance), and suppose also that the µj are known exactly and that we assign each point x to
the cluster that minimizes ‖x− µj‖2.6 Then the error in cluster recovery is exactly the probability that a
sample from µj ends up closer to some other sample µj′ , which is

k∑
j=1

αjPx∼N (µj ,σ2I)[‖x− µj‖2 > ‖x− µj′‖2 for some j′ 6= j] ≤
k∑
j=1

αj
∑
j′ 6=j

Φ(‖µj − µj′‖/σ) (269)

≤ kΦ(∆/σ), (270)

where ∆ = minj′ 6=j ‖µj − µj′‖2 and Φ is the normal CDF. As long as ∆�
√

log(k/ε), the cluster error will
be at most ε. Note that the cluster error depends on a separation condition stipulating that the cluster
centers are all sufficiently far apart. Moreover, we need greater separation if there are more total clusters
(albeit at a slowly-growing rate in the Gaussian case).

5.4.2 Clustering Under Resilience

The mixture of Gaussians case is unsatisfying because data are unlikely to actually be Gaussian mixtures in
practice, yet common algorithms like k-means still do a good job at clustering data. We therefore move to the
agnostic setting, and show that we only need the distributions to be resilient in order to cluster successfully.

We will start by proving an even stronger result—that if a set of points contains a (ρ, α)-resilient subset
S of size αn, then it is possible to output an estimate µ̂ that is close to the true mean µ of S, regardless
of the other (1 − α)n points. As stated, this is impossible, since there could be O(1/α) identical clusters
in the data. So what we will actually show is a list-decoding result—that it is possible to output O(1/α)
“candidates” µ̂l such that one of them is close to the mean of S:

Proposition 5.2. Suppose that a set of points S̃ = {x1, . . . , xn} contains a (ρ, α/4)-resilient set S with
mean µ. Then if |S| ≥ αn (even if α < 1

2), it is possible to output m ≤ 2
α candidates µ̂1, . . . , µ̂m such that

‖µ̂j − µ‖ ≤ 8ρ
α for some j.

Proof. The basic intuition is that we can cover the points in S̃ by resilient sets S′1, . . . , S
′
2/α of size α

2 n. Then

by the pigeonhole principle, the resilient set S must have large overlap with at least one of the S′, and hence
have similar mean. This is captured in Figure 9 below.

The main difference is that S and S′ may have relatively small overlap (in a roughly α-fraction of elements).
We thus need to care about resilience when the subset T is small compared to S. The following lemma relates
resilience on large sets to resilience on small sets:

Lemma 5.3. For any 0 < ε < 1, a distribution/set is (ρ, ε)-resilient if and only if it is ( 1−ε
ε ρ, 1− ε)-resilient.

This was already proved in Appendix C as part of Lemma 2.14. Given Lemma 5.3, we can prove
Proposition 5.2 with a similar triangle inequality argument to how we showed that resilient sets have small
modulus of continuity. However, we now need to consider multiple resilient sets Si rather than a single S′.

6This is not quite optimal, in reality we would want to assign based on ‖x− µj‖22/σ2 + logαj , but we consider this simpler
assignment for simplicity.
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Figure 9: If we cover S̃ by resilient sets, at least one of the sets S′ has large intersection with S.

Suppose S is (ρ, α4 )-resilient around µ–and thus also ( 4
αρ, 1−

α
4 )-resilient by Lemma 5.3–and let S1, . . . , Sm

be a maximal collection of subsets of [n] such that:

1. |Sj | ≥ α
2 n for all j.

2. Sj is ( 4
αρ, 1−

α
2 )-resilient (with mean µj).

3. Sj ∩ Sj′ = ∅ for all j 6= j′.

Clearly m ≤ 2
α . We claim that S has large intersection with at least one of the Sj and hence µj is close

to µ. By maximality of the collection {Sj}mj=1, it must be that S0 = S\(S1 ∪ · · · ∪ Sm) cannot be added to

the collection. First suppose that |S0| ≥ α
2 n. Then S0 is ( 4

αρ, 1−
α
2 )-resilient (because any subset of α

2 |S0|
points in S0 is a subset of at least α

4 |S| points in S). This contradicts the maximality of {Sj}mj=1, so we must
have |S0| < α

2 n.
Now, this implies that |S ∩ (S1 ∪ · · · ∪ Sm)| ≥ α

2 n, so by pigeonhole we must have |S ∩ Sj | ≥ α
2 |Sj | for

some j. Letting T = S ∩ Sj as before, we find that |T | ≥ α
2 |Sj | ≥

α
4 |S| and hence by resilience of Sj and S

we have ‖µ− µj‖ ≤ 2 · ( 4
αρ) = 8

αρ by the same triangle inequality argument as before.

Better bounds for well-separated clusters. Proposition 5.2 is powerful because it holds under very
minimal conditions (we do not need to assume anything about separation of clusters or even about any of the
clusters other than the one we are estimating). However, its guarantees are also minimal—we only know that
we get approximate parameter recovery in the list-decoding model, and cannot say anything about cluster
recovery. We next obtain a stronger bound assuming that the data can actually be separated into clusters
(with a small fraction of outliers) and that the means are well-separated. This stronger result both gives
cluster recovery, and gives better bounds for parameter recovery:

Proposition 5.4. Suppose that a set of points {x1, . . . , xn} can be partitioned into k sets C1, . . . , Ck of size
α1n, . . . , αkn, together with a fraction εn of outliers (ε = 1 − (α1 + · · ·+ αk)), where 2ε ≤ α = minkk=1 αj.
Further suppose that

• Each cluster is (ρ1, ε)-resilient and (ρ2, 2ε/α)-resilient.

• The means are well-separated: ∆ > 4ρ1
ε where ∆ = minj 6=j′ ‖µj − µj′‖2.

Then we can output clusters Ĉ1, . . . , Ĉk such that:

• |Cj4Ĉj | ≤ O(ε/α)|Cj | (cluster recovery)

• The mean µ̂j of Ĉj satisfies ‖µ̂j − µj‖2 ≤ 2ρ2 (parameter recovery).

Proof. We will construct a covering by resilient sets as before, but this time make use of the fact that we
know the data can be approximately partitioned into clusters. Specifically, let S1, . . . , Sk be a collection of k
sets such that:

• |Sl| ≥ αn

• The Sl are disjoint and contain all but εn points.
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• Each Sl is (ρ1, ε)-resilient.

We know that such a collection exists because we can take the Cj themselves. Now call a set S “j-like” if it
contains at least αj(ε/α)|S| points from Cj . We claim that each Sl is j-like for exactly one j. Indeed, by
pigeonhole it must be j-like for at least one j since ε/α ≤ 1/2 < 1.

In the other direction, note that if S if j-like then S ∩ Cj contains at least (αj/α)ε of the points in S,
and at least (|S|/n)(ε/α) ≥ ε of the points in Cj . Thus by resilience of both sets, the means of both S and
Cj are within ρ1

ε of the mean of S ∩ Cj and hence within 2ρ1
ε of each other. In summary, ‖µj − µS‖2 ≤ 2ρ1

ε .

Now if S were j-like and also j′-like, then we would have ‖µj − µj′‖2 ≤ 4ρ1
ε , which contradicts the separation

assumption.
Since Sl is j-like for a unique j, it contains at most (ε/α)|Sl| points from any of the other Cj′ , together

with at most εn outliers. Moreover, since the other Sl′ are not j-like, Sl is missing at most αj(ε/α)n points
from Cj . Thus Sl ∩ Cj is missing at most 2ε/α|Sl| points from Sl and at most ε/α|Cj | points from Cj . By
resilience their means are thus within 2ρ2 of each other, as claimed.

5.5 Efficient Clustering Under Bounded Covariance

We saw that resilience is information-theoretically sufficient for agnostic clustering, but we would also like to
develop efficient algorithms for clustering. This is based on work in Kumar and Kannan (2010) and Awasthi
and Sheffet (2012), although we will get a slightly slicker argument by using the machinery on resilience that
we’ve developed so far.

As before, we will need a strong assumption than resilience. Specifically, we will assume that each cluster
had bounded covariance and that the clusters are well-separated:

Theorem 5.5. Suppose that the data points x1, . . . , xn can be split into k clusters C1, . . . , Ck with sizes
αn, · · · , αkn and means µ1, . . . , µk, and moreover that the following covariance and separation conditions
hold:

• 1
|Cj |

∑
i∈Cj (xi − µj)(xi − µj)

> � σ2I for each cluster Cj,

• ∆ ≥ 36σ/
√
α, where ∆ = minj 6=j′ ‖µj − µj′‖2.

Then there is a polynomial-time algorithm outputting candidate clusters Ĉ1, . . . , Ĉk and means µ̂1, . . . , µ̂k
such that:

• |Cj4Ĉj | = O(σ2/α∆2) (cluster recovery), and

• ‖µj − µ̂j‖2 = O(σ2/α∆) (parameter recovery).

The basic idea behind the algorithm is to project each of the points xi onto the span of the top k singular
vectors of the data matrix X = [x1 · · · xn]. Let Pk be the projection operator onto this space. Then since
the points Pxi lie in only a k-dimensional space instead of a d-dimensional space, they are substantially
easier to cluster. The algorithm itself has three core steps and an optional step:

1. Project points xi to Pxi.

2. Form initial clusters based on the Pxi.

3. Compute the means of each of these clusters.

4. Optionally run any number of steps of k-means in the original space of xi, initialized with the computed
means from the previous step.

We will provide more formal psuedocode later [NOTE: TBD]. For now, we focus on the analysis, which has
two stages: (1) showing that the initial clustering from the first two steps is “nice enough”, and (2) showing
that this niceness is preserved by the k-means iterations in the second two steps.
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Analyzing the projection. We start by analyzing the geometry of the points Pkxi. The following lemma
shows that the projected clusters are still well-separated and have small covariance:

Lemma 5.6. The projected points Pkxi satisfy the covariance and separation conditions with parameters σ
and

√
∆2 − 4σ2/α ≥ 35σ/

√
α:

1

|Cj |
∑
i∈Cj

(Pxi − Pµj)(Pxi − Pµj)> � σ2I and ‖Pµj − Pµj′‖2 ≥
√

∆2 − 4σ2/α. (271)

In other words, the covariance condition is preserved, and separation is only decreased slightly.

Proof. The covariance condition is preserved because the covariance matrix of the projected points for cluster
j is PkΣjPk, where Σj is the un-projected covariance matrix. This evidently has smaller singular values than
Σk.

The separation condition requires more detailed analysis. We start by showing that there is not much in
the orthogonal component (I−Pk)xi. Indeed, we have that the top singular value of (I−Pk)xi is at most σ:

S =
1

n

n∑
i=1

((I − Pk)xi)((I − Pk)xi)
> � σ2I (272)

This is because Pk minimizes this top singular value among all k-dimensional projection matrices, and if we
take the projection Qk onto the space spanned by the means µ1, . . . , µk, we have

1

n

n∑
i=1

((I −Qk)xi)((I −Qk)xj)
> =

k∑
j=1

αj
|Cj |

∑
i∈Cj

((I −Qk)xi)((I −Qk)xi)
> (273)

=

k∑
j=1

αj
|Cj |

∑
i∈Cj

((I −Qk)(xi − µj))((I −Qk)(xi − µj))> (274)

�
k∑
j=1

αj
|Cj |

∑
i∈Cj

(xi − µj)(xi − µj)> �
k∑
j=1

αjσ
2I = σ2I. (275)

Given this, we know that the projections (I − Pk)µj must be small, since otherwise we have

v>Sv =
1

n

n∑
i=1

〈(I − Pk)xi, v〉2 (276)

≥ αj
|Cj |

∑
i∈Cj

〈(I − Pk)xi, v〉2 (277)

≥ αj
〈 1

|Cj |
∑
i∈Cj

(I − Pk)xi, v
〉2

(278)

= αj〈(I − Pk)µj , v〉2. (279)

Consequently 〈(I−Pk)µj , v〉2 ≤ σ2/αj and hence (taking v to align with (I−Pk)µj) we have ‖(I−Pk)µj‖2 ≤
σ/
√
αj . In particular ‖(I − Pk)(µj − µj′)‖2 ≤ 2σ/

√
α.

Now, by the Pythagorean theorem we have

‖Pk(µj − µj′)‖22 = ‖µj − µj′‖22 − ‖(I − Pk)(µj − µj′)‖22 ≥ ∆2 − 4σ2/α, (280)

and hence the projected means are separated by at least
√

∆2 − 4σ2/α, as was to be shown.

Analyzing the initial clustering. We now analyze the initial clustering. Call a point i a proto-center if
there are at least α

2 n projected points within distance 3σ
√
k of Pkxi, and call the set of these nearby points

the associated proto-cluster.
We will show that the proto-clusters are nearly pure (have few points not from Cj) using a similar

argument as when we analyzed resilient clustering. As before, call a proto-cluster j-like if there are at least
αjα

4 n points from Cj in the proto-cluster.
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Lemma 5.7. Each proto-cluster is j-like for exactly one j.

Proof. We know that it is j-like for at least one j by the Pigeonhole principle (if not, then the proto-cluster
has at most α

4 n points in total, contradicting its size of at least α
2 n). So suppose for the sake of contradiction

that it is both j-like and j′-like. By resilience, the mean of the points from Cj is at most 2σ/
√
α away from

Pkµj , and similarly the mean of the points from Cj′ is at most 2σ/
√
α away from Pkµj′ . Since the cluster has

radius 3σ
√
k ≤ 3σ/

√
α, this implies that ‖Pk(µj − µj′)‖2 ≤ 10σ/

√
α, contradicting the separation condition

for the projected means. Thus no proto-cluster can be j-like for multiple j, which proves the lemma.

Now since each proto-cluster is j-like for exactly one j, at least half of the points must come from that
proto-cluster.

At this point we are essentially done if all we care about is constructing an efficient algorithm for cluster
recovery (but not parameter recovery), since if we just extend each proto-cluster by O(σ) we are guaranteed
to contain almost all of the points in its corresponding cluster, while still containing very few points from any
other cluster (assuming the data are well-separated). However, parameter recovery is a bit trickier because we
need to make sure that the small number of points from other clusters don’t mess up the mean of the cluster.
The difficulty is that while we have control over the projected distances, and can recover the projected centers
Pkµj well, we need to somehow get back to the original centers µj .

The key here is that for each proto-cluster, the Pxi are all close to each other, and the missing component
(I − Pk)xi has bounded covariance. Together, these imply that the proto-cluster is resilient—deleting an
ε-fraction of points can change the mean by at most O(σε) in the Pk component, and O(σ

√
ε) in the (I −Pk)

component. In fact, we have:

Lemma 5.8. Let B be a proto-cluster with mean ν. Then

1

|B|
∑
i∈B

(xi − ν)(xi − ν)> � 11σ2/α. (281)

In particular, if B is j-like then we have ‖µj − ν‖2 ≤ 9σ/
√
α.

Proof. The covariance bound is because the covariance of the xi are bounded in norm by at most 3σ
√
k

in the Pk component and hence can contribute at most 9σ2k ≤ 9σ2/α to the covariance, while we get an
additional 2σ2/α in an orthogonal direction because the overall second moment of the (I − Pk)xi is σ2 and
the i ∈ B contribute to at least an α

2 fraction of that.
Now, this implies that B is resilient, while we already have that Cj is resilient. Since B ∩ Cj contains at

least half the points in both B and Cj , this gives that their means are close–within distance 2(
√

11+1)σ/
√
α <

9σ/
√
α.

Analyzing k-means. We next show that k-means iterations preserve certain important invariants. We
will call the assigned means µ̂j R-close if ‖µ̂j − µj‖2 ≤ R for all j, and we will call the assigned clusters Ĉj
ε-close if |Cj4Ĉj | ≤ ε|Cj | for all j. We will show that if the means are R-close then the clusters are ε-close
for some ε = f(R), and that the resulting new means are then g(R)-close. If R is small enough then we will
also have g(R) < R so that we obtain an invariant.

Let ∆jj′ = ‖µj − µj′‖2, so ∆jj′ ≥ ∆. We will show that if the µ̂j are R-close, then few points in Cj can

end up in Ĉj′ . Indeed, if xi ends up in Ĉj′ then we must have ‖xi − µ̂j′‖22 ≤ ‖xi − µ̂j‖22, which after some
re-arrangement yields

〈xi − µ̂j , µ̂j′ − µ̂j〉 ≥
1

4
〈µ̂j′ − µ̂j , µ̂j′ − µ̂j〉. (282)

Applying the covariance bound and Chebyshev’s inequality along the vector v = µ̂j′ − µ̂j , we see that the

fraction of points in Cj that end up in Ĉj′ is at most 4σ2

‖µ̂j−µ̂j′‖22
≤ 4σ2

(∆jj′−2R)2 ≤
4σ2

(∆−2R)2 . In total this means

that at most 4σ2n
(∆−2R)2 points from other clusters end up in Ĉj , while at most

4kσ2|Cj |
(∆−2R)2 points from Cj end up

in other clusters. Thus we have ε ≤ 4kσ2

(∆−2R)2 + 4σ2

α(∆−2R)2 ≤
8σ2

α(∆−2R)2 , so we can take

f(R) =
8σ2

α(∆− 2R)2
. (283)
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Now suppose that γjj′ |Cj | points in Cj are assigned to Ĉj′ , where we must have γjj′ ≤ 4σ2

(∆jj′−2R)2 . By

resilience, the mean of these points is within σ/
√
γjj′ of µj and hence within ∆jj′ + σ/

√
γjj′ of µj′ . In total,

then, these points can shift the mean µ̂j′ by at most

γjj′αjn(∆jj′ + σ/
√
γjj′)

1
2αn

≤ 2αj
α

( 4σ2∆jj′

(∆jj′ − 2R)2
+

2σ2

∆jj′ − 2R

)
≤ 4αj

α

( 2σ2∆

(∆− 2R)2
+

σ2

∆− 2R

)
. (284)

At the same time, the 4kσ2

(∆−2R)2 fraction of points that are missing from Cj′ can change its mean by at most

4σ2
√
k

∆−2R . Thus in total we have

‖µ̂j′ − µj′‖2 ≤
4σ2

∆− 2R
·
(√

k +
1

α
+

2∆

α(∆− 2R)

)
≤ 8σ2(∆−R)

α(∆− 2R)2
. (285)

In particular we can take g(R) = 8σ2(∆−R)
α(∆−2R)2 .

As long as R ≤ ∆/4 we have g(R) ≤ 24σ2

α∆ and f(R) ≤ 32σ2

α∆2 , as claimed. Since our initial R is 9σ/
√
α,

this works as long as ∆ ≥ 36σ/
√
α, which completes the proof.

[Lecture 19]

6 Nonparametric Learning in Hilbert spaces

We will now shift focus to nonparametric learning, where we seek to estimate a function lying within some
infinite-dimensional space. We will start by considering linear regression in reproducing kernel Hilbert spaces
(RKHSs). This is the same as ordinary or ridge regression, except that all of the underlying objects are
infinite-dimensional. It turns out that to handle this infinite dimensionality, it is helpful to consider a different
basis representation for linear regression, in terms of the function itself rather than its parameters. This will
be our starting point.

6.1 Preliminaries: Parameter vs. Function View

We will start by considering the usual task of ordinary linear regression: given (x1, y1), . . . , (xn, yn), find β
such that L(β) = 1

n

∑n
i=1(yi − 〈β, xi〉)2 is minimized.

Letting X be the n × p matrix of covariates and y the n × 1 matrix of outputs, the solution β̂ of this
problem can be expressed as

β∗ = (X>X)−1X>y, or β∗ = (
1

n

n∑
i=1

xix
>
i︸ ︷︷ ︸

S

)−1
n∑
i=1

xiyi. (286)

In addition, for any other value of β, the excess loss relative to β∗ can be expressed as

L(β)− L(β∗) = (β − β∗)>S(β − β∗), (287)

where as above S is the second moment matrix of the covariates.
Finally, we can consider instead ridge regression, where we minimize Lλ(β) = λ

n‖β‖
2
2 + L(β). In this case

the minimizer is equal to

β̂λ = (λI +X>X)−1X>y = (
λ

n
I + S)−1(

1

n

n∑
i=1

xiyi). (288)

This is the standard view of linear regression and what we will call the parameter view, since it focuses on
the parameters β. But it is also helpful to adopt a different view, which we’ll the function view. The function
view instead focuses on the learned function fβ(x) = β>x. Thus we instead have L(f) = 1

n

∑n
i=1(yi− f(xi))

2
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(assume for now that f is linear in x; by convention L(f) =∞ for all other such f , but the derivations below
will focus on the case where L(f) is finite).

The excess loss is particularly easy to write down in the function view:

L(f)− L(f∗) =
1

n

n∑
i=1

(f(xi)− f∗(xi))2 =
1

n
‖f − f∗‖22, (289)

where the `2-norm treats f as an n-dimensional vector of values on the xi.
What is f∗ = fβ∗ in this case? Again expressing f∗ as an n-dimensional vector, we have

fβ∗ = Xβ∗ = X(X>X)−1X>y, (290)

or in other words fβ∗ is the projection of y onto the p-dimensional linear span of the xi, which makes sense.
For ridge regression, we would also like to express ‖β‖22 in terms of f . This is a bit trickier, but noting

that β = (X>X)−1X>f , a formula that works is

‖β‖22 = f>X(X>X)−2X>f = f>K†f, (291)

where K = XX> is the n× n kernel matrix (Kij = 〈xi, xj〉) and † denotes pseudoinverse. As this is also an
important norm for f , we will give it a name, ‖f‖K :

‖f‖2K = f>K†f if f lies in the span of K, and ∞ otherwise. (292)

Now we can write down ridge regression in the function view:

f̂λ = arg min
f

λ

n
‖f‖2K +

1

n
‖f − y‖22 (293)

=⇒ λK†f̂λ + (f̂λ − y) = 0 (294)

=⇒ f̂λ = (λK† + I)−1y (295)

=⇒ f̂λ = K(λI +K)−1y. (296)

This is also called kernel ridge regression, since it depends only on the kernel matrix K.
A final issue is how to evaluate f on a new data point x. It helps to first define kx = X>x, the n × 1

matrix of inner products between x and the xi. We then have x = (X>)†kx and β = X†f and so

f(x) = β>x (297)

= f>(X†)>X†kx (298)

= f>(XX>)†kx = f>K†kx. (299)

Thus for instance f̂λ(x) = k>xK
†K(λI +K)−1y.

6.2 The infinite-dimensional case

We are interested in nonparametric regression, meaning regression over infinite-dimensional families of
functions. The function view on regression is particularly useful in this case, because we can dispense with
worrying about vectors xi and focus only on the kernel matrix K. In fact, we will simply posit that there
exists a kernel function k(x, x′), such that for any finite set T = {x1, . . . , xn} the matrix K[T ] defined by
Kij = k(xi, xj) is positive semidefinite, and strictly positive definite whenever the xi are distinct. The
corresponding function space, called the reproducing kernel Hilbert space of k, is defined as

H = {f | sup
T
‖f‖K[T ] <∞}, (300)

with corresponding norm ‖f‖H = supT ‖f‖K[T ].
The strict positive definiteness actually implies that k represents an infinite-dimensional space, since for a

p-dimensional space K[T ] would have rank at most p and thus eventually be only semidefinite.
To show that H is non-empty (and more generally that the definitions all make sense), we need two

lemmas. First, evaluating ‖f‖K on a larger subset T always increases the norm:
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Lemma 6.1 (Restrictions are contractions). For any f and any sets T ⊆ T ′, we have ‖f‖K[T ] ≤ ‖f‖K[T ′].

Secondly, despite this, we can extend a function f from any subset T to all of X without increasing the
norm:

Lemma 6.2 (Isometric extension). Let T = {x1, . . . , xn} and let y1, . . . , yn ∈ R be arbitrary target values.
Then there exists an f ∈ H such that f(xi) = yi for all i, and moreover ‖f‖2H = ‖y‖2K = y>K−1y.

Proof of Lemma 6.2. Define f(x) = k>xK
−1y. Since kxi is the ith row of K, k>xiK

−1 is the ith standard basis
vector, so f(xi) = yi.

It remains to show that f has bounded norm. For sets T = {x1, . . . , xn} and T ′ = {x′1, . . . , x′m}, let
K[T, T ′] be the (rectangular) kernel matrix where Kij = k(xi, x

′
j). Then f evaluated on T ′ is equal to

K[T, T ′]>K[T, T ]−1y. For notational ease define K11 = K[T, T ], K12 = K[T, T ′], etc. Thus

‖f‖2K[T ′] = y>K[T, T ]−1K[T, T ′]K[T ′, T ′]−1K[T ′, T ]K[T, T ]−1y (301)

= y>K−1
11 K12K

−1
22 K21K

−1
11 y. (302)

Recall we wish to show this is at most y>K−1
11 y. It suffices to show that K−1

11 K12K
−1
22 K21K

−1
11 � K−1

11 , or

K12K
−1
22 K21 � K11. But this follows from the Schur complement lemma, since

[
K11 K12

K21 K22

]
is positive

definite.

Proof of Lemma 6.1. Under the notation above we want to show that y>1 K
−1
11 y1 ≤

[
y1

y2

]> [
K11 K12

K12 K22

]−1 [
y1

y2

]
.

This follow by noting that for large λ we have

[
K11 + 1

λI 0
0 λ2I

]
�
[
K11 K12

K21 K22

]
and then inverting and

taking limits.

Remark 6.3. This route to defining H is different from the typical treatment which instead focuses on
the representer theorem. That theorem starts with the infinite-dimensional space and then shows that the
minimum-norm interpolator for a set T lies within the span of K[T ]. Here we take essentially the reverse
approach, starting with an interpolating function and showing that it can be isometrically embedded in H. I
personally prefer the approach above, as it makes it much cleaner to define both ‖f‖H and H itself.

Note that Lemma 6.2 also shows that kernel ridge regression can be expressed intrinsically, without
explicit reference to the set T : f̂λ = arg minf

λ
n‖f‖

2
H + 1

n

∑n
i=1(f(xi)− yi)2. This is because we can always

find on f on T = {x1, . . . , xn} such that ‖f‖H = ‖f‖K[T ].

Finally, since K is invertible, kernel ridge regression has an even simpler form: f̂λ(x) = k>x (λI +K)−1y.
If we set λ = 0 then we recover the isometric extension f of y in Lemma 6.2.

[Lecture 20]

6.3 Bias-variance decomposition

Next we analyze the statistical error of kernel ridge regression. Let us suppose that for a fixed set T =
{x1, . . . , xn}, we observe points (xi, yi), where yi = f∗(xi)+εi, εi ∼ N (0, σ2). Then as in the finite-dimensional

case, we can analyze the bias and variance of an estimated function f̂ . For the ordinary least squares estimator
f̂0, this is trivial, since f̂0(xi) = yi and so the bias is zero while the variance is E[ 1

n

∑n
i=1(yi − f∗(xi))2] = σ2,

independent of n. This makes sense, as f̂0 interpolates the data and is thus completely sensitive to noise.
Therefore consider instead the ridge estimator f̂λ = K(λI +K)−1y. We have Eε[y] = f∗ while Varε[y] =

σ2In×n. Then E[f̂λ] = K(λI +K)−1f∗ and so the bias-squared, 1
n‖E[f̂λ]− f∗‖22, is

Bias2 =
1

n
‖K(λI +K)−1f∗ − f∗‖22 =

λ2

n
‖(λI +K)−1f∗‖22. (303)

A useful but loose upper bound can be obtained via ‖(λI +K)−1f∗‖22 ≤ 1
λ (f∗)>K−1f∗ = 1

λ‖f
∗‖2H, so the

bias is at most λ
n‖f‖

2
H assuming f lies in H (we will later relax this assumption, and indeed show that it

must be relaxed to get the optimal rates).
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Next, the variance is 1
n

∑n
i=1 Varε[f(xi)] = Eε[ 1

n‖K(λI +K)−1ε‖22], or

Var =
σ2

n
tr((λI +K)−1K2(λI +K)−1). (304)

Again, a somewhat loose upper bound is σ2

λ (tr(K)/n).
Thus, assuming both tr(K)/n and ‖f‖2H are bounded, if we optimize λ the sum of the bias and variance

can be bounded by 2σ√
n
‖f‖H

√
tr(K)/n. One should generally think of tr(K)/n as being roughly constant

as n grows, so this gives a 1/
√
n rate of convergence for the squared error. This is slower than the usual

parametric rate of 1/n (for the squared error), but that is perhaps not surprising given we are in infinite
dimensions. However, more unusual is that the exponent on n does not seem to depend at all on the geometry
of H. This is surprising, as we know for instance that it is much easier to estimate smooth functions than
functions that are merely Lipschitz, and in fact the exponent in n is different in both cases (as it turns out,
log(n)
n versus 1

n2/3 for functions on [0, 1]).

Prior on f . The issue is with the “right prior” to place on f . From a Bayesian perspective, kernel ridge

regression is optimal when β is drawn from a Gaussian prior: β ∼ N (0, σ
2

λ I). From a function perspective

this corresponds to the Gaussian process prior f ∼ N (0, σ
2

λ K). In this case the expected norm-squared

is E[‖β‖22] = σ2

λ tr(I) = σ2

λ p. This is a problem when p = ∞! A similar problem shows up with f :

E[‖f‖2H] = E[f>K−1f ] = σ2

λ tr(K−1K) = σ2

λ n.
We therefore need a better bound on the bias that doesn’t rely on ‖f‖2H, which is unbounded. Returning

to (303), under a Gaussian process prior f ∼ N (0, ρ2K) we have

E[Bias2] =
λ2

n
E[f

∗
(λI +K)−2f∗] =

λ2ρ2

n
tr((λI +K)−2K) =

λρ2

n

n∑
j=1

λµj
(λ+ µj)2

, (305)

where µj are the eigenvalues of K. Similarly the variance is σ2

n

∑n
j=1

µ2
j

(λ+µj)2
. Thus the overall error is

E[Error] =
λρ2

n

n∑
j=1

λµj
(λ+ µj)2

+
σ2

n

n∑
j=1

µ2
j

(λ+ µj)2
. (306)

We can bound (306) using the inequalities
λµj

(λ+µj)2
≤ min(1,

µj
λ ) and

µ2
j

(λ+µj)2
≤ min(1,

µ2
j

λ2 ). Sort the µj in

descending order and let J = max{j | µj > λ}. Then these inequalities yields

E[Error] ≤ (λρ2 + σ2)J

n
+
λρ2

n

∑
j>J

µj
λ

+
σ2

n

∑
j>J

µ2
j

λ2
. (307)

Interpretation for power law decay. Suppose for concreteness that µj = nj−α; this power law decay is
common empirically and also shows up in theoretical examples such as learning Lipschitz functions. Then
J = (λ/n)−1/α. Moreover, the sums can be approximated as

∑
j>J

µj
λ
≈ 1

λ

∫ ∞
J

x−αdx =
1

λ(α− 1)
J1−α =

J

α− 1
=

(λ/n)−1/α

α− 1
, (308)

∑
j>J

µ2
j

λ2
≈ 1

λ2

∫ ∞
J

x−2αdx =
1

λ2(2α− 1)
J1−2α =

(λ/n)−1/α

2α− 1
. (309)

Assuming α > 1, the overall expression (307) is thus bounded by

E[Error(λ)] ≤ O
( α

α− 1
(λ/n)1−1/αρ2 +

σ2(λ/n)−1/α

n

)
. (310)
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Now take the optimal λ∗ = σ2

ρ2 . Then we obtain the final bound of

E[Error(λ∗)] ≤ O
( α

α− 1
n

1
α−1

(
σ2
)α−1

α
(
ρ2
) 1
α

)
. (311)

Thus for instance when α = 2 we get a 1/
√
n rate, but as α→∞ we approach a 1/n rate.

Note that for sub-optimal choices of regularizer, we still get a bound but with a potentially worse
dependence on n. For instance if we took λ∗ ∝ nβ , for β > 0, then our rate would be suboptimal by a
nβ(α−1)/α factor in n due to the over-regularization.

6.4 Generalizing from train to test

So far our error bounds have all been on the original sample points x1, . . . , xn. But we generally care
about how well we do on new points drawn from p. We will analyze this next, although in this case it is
helpful to switch back to the parameter rather than the function view. Recall that there we had the matrix
S = 1

n

∑n
i=1 xix

>
i , and we will also define S∗ = Ex∼p[xx>]. Then letting L∗ be the population loss, we have

L∗(β)− L∗(β∗) = (β − β∗)>S∗(β − β∗).
The ridge regression estimator β̂λ is still equal to 1

n (λnI + S)−1X>(Xβ∗ + ε), so Eε[β̂λ] = (λnI + S)−1Sβ∗.

Define the notation λn = λ/n. The bias is δ>S∗δ, where δ = E[β̂λ]− β∗, which works out to

Bias2 = λ2
n(β∗)>(λnI + S)−1S∗(λnI + S)−1β∗, (312)

which under the Gaussian process prior is

E[Bias2] = λ2
nρ

2 tr((λnI + S)−1S∗(λnI + S)−1). (313)

Now, note that this is almost the expression we would get from running ridge regression directly on the test
distribution–the only difference is that (λnI + S∗)−1 is replaced with (λnI + S)−1 in two places.

The variance can be computed similarly as

Var =
1

n2
Eε[‖(S∗)1/2(λnI + S)−1X>ε‖22] (314)

=
σ2

n
tr((S∗)1/2(λnI + S)−1S(λnI + S)−1(S∗)1/2). (315)

Here, the expression is trickier because we have both S and (λnI + S)−1. But since S(λnI + S)−1 � I, we
can apply the further bound

Var ≤ σ2

n
tr((S∗)1/2(λnI + S)−1(S∗)1/2). (316)

Relative to this bound, again the only difference is replacing (λnI + S∗)−1 with (λnI + S)−1. Using these
results, we can obtain the following generalization bound:

Proposition 6.4. Suppose that the true and empirical covariance matrices satisfy S∗ � 2S + λnI. Then,
letting µ∗j denote the jth eigenvalues of S∗, the generalization error satisfies

Eε[L∗(β̂λ)]− L∗(β∗) ≤ 4λnρ
2
∑
j

λnµ
∗
j

(λn + µ∗j )
2

+
2σ2

n

∑
j

µ∗j
λn + µ∗j

(317)

≤
(

4λnρ
2 +

2σ2

n

)∑
j

min
(
1,
µ∗j
λn

)
. (318)

Note that relative to the kernel case, µ∗j is n times smaller, since it is an eigenvalue of S rather than K.

This expression is similar to what we achieved in (307), and when µ∗j = j−α setting λn = σ2

nρ2 will yield

the same power law rate as before of n
1
α−1.

The key question is for what values of λn the condition S∗ � 2S + λnI is satisfied. This requires the
empirical covariance matrix to concentrate to the population covariance. To analyze this, we will make use of
the following result of Koltchinskii and Lounici (2017):
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Theorem 6.5 (Koltchinskii and Lounici). If the xi are Gaussian with covariance Σ∗, then the empirical
covariance matrix Σ̂ satisfies

‖Σ∗ − Σ̂‖ . max
( tr(Σ∗)

n
,

√
tr(Σ∗)‖Σ∗‖

n

)
(319)

with high probability. In particular, if S∗ is p× p and p ≤ n then we have ‖S∗ − S‖ ≤ ‖S∗‖
√
p/n with high

probability.

Recall that we want to show that 2S + λnI � S∗, or 2S � (S∗ + λnI)− 2λnI. By re-arrangement, this is
equivalent to

(S∗ + λnI)−1/2S(S∗ + λnI)−1/2 � 1

2
I − λn(S∗ + λnI)−1. (320)

But the left-hand-side is the empirical covariance matrix of a Gaussian with covariance Σ∗ = S∗(S∗ + λnI)−1.
We will apply Theorem 6.5 to this matrix, i.e. Σ̂ = (S∗ + λnI)−1/2S(S∗ + λnI)−1/2.

We have ‖Σ∗‖ ≤ 1, and tr(Σ) =
∑
j

µ∗j
µ∗j+λn

. Therefore, ‖Σ̂− Σ∗‖ ≤ 1
2 as long as n�

∑
j

µ∗j
µ∗j+λn

. In this

case, we have

Σ̂ = (S∗ = λnI)−1/2S(S∗ + λnI)−1/2 (321)

� S∗(S∗ + λnI)−1 − 1

2
I (322)

=
1

2
I + (S∗(S∗ + λnI)−1 − I) (323)

=
1

2
I − λn(S∗ + λnI)−1, (324)

as was to be shown. This yields the result:

Corollary 6.6. Suppose λn is such that n ≥ C
∑
j

µ∗j
µ∗j+λn

, for some universal constant C. Then the

generalization error of ridge regression satisfies

Eε[L∗(β̂λ)]− L∗(β∗) ≤
(

4λnρ
2 +

2σ2

n

)∑
j

min
(
1,
µ∗j
λn

)
. (325)

Consider again the case of power law decay, with µ∗k = j−α. We saw before that by taking the optimal

value λn = σ2

nρ2 , we achieve generalization error O( α
α−1n

1
α−1(σ2)

α−1
α (ρ2)

1
α ). However, we also must have∑

j min(1,
µ∗j
λn

)� n, which reduces to α
α−1λ

−1/α
n � n. Thus λn �

(
α
α−1

)α
n−α ≈ α

α−1n
−α. Since α > 1, this

usually does not matter except when σ is very small. In this case, since λn is forced to be larger than optimal,
the 4λnρ

2 term dominates and we instead achieve error that is on the order of

λnρ
2
∑
j

min(1, µ∗j/λn) ≈ λnρ2 · α

α− 1
λ−1/α
n (326)

≈ α

α− 1

( α

α− 1
n−α

)1−1/α

ρ2 (327)

≈ α

α− 1
n1−αρ2. (328)

Therefore, a general upper bound for the generalization error (assuming the best choice of lambda) is

O
( α

α− 1
max

(
n

1
α−1(σ2)

α−1
α (ρ2)

1
α , n1−αρ2

))
. (329)

Thus for instance when α = 2, if σ is large we achieve a rate n−1/2 but as σ → 0 the rate improves to n−1.
Finally, the conditions in Theorem 6.5 can be relaxed somewhat, as discussed in Koltchinskii and Lounici

(2017). In particular, we don’t need perfect Gaussianity and can get by with appropriate sub-Gaussian
assumptions.

[Lecture 21]
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6.5 Eigenvalues and Mercer’s theorem

It is often helpful to represent the above computations in terms of the eigenbasis of k. Since k is infinite-
dimensional, we need some conditions to ensure that it actually has an eigenbasis. These are given by Mercer’s
theorem:

Theorem 6.7 (Mercer). Suppose that k : X × X is a positive definite kernel, that k is continuous, and that
X is compact and equipped with a finite measure ν that is supported on all of X . Define

Tkf(x) =

∫
X
k(x, s)f(s)dν(s). (330)

Then there is an orthonormal basis of eigenfunctions of Tk, e1, e2, . . ., with corresponding eigenvalues µ1, µ2, . . .,
such that

k(x, x′) =

∞∑
m=1

µmem(x)em(x′). (331)

Note that the eigenfunctions will be different depending on the choice of ν, and orthogonality is with
respect to ν:

∫
el(x)em(x)dν(x) = δlm. There are thus three distinct inner products floating around: the

one underlying the norm ‖f‖H, the one underlying the function error ‖f − y‖2, and the one associated with
ν. This can get a bit confusing, but it helps to think of ‖f‖H and ‖f‖2 as the “important” norms, while ν
specifies a non-intrinsic norm that is however useful for computational purposes.

Speaking of these computational purposes, let us see what Mercer’s theorem buys us. Any function f can
now be represented as f(x) =

∑∞
m=1 cmem(x), where cm =

∫
X f(x)em(x)dν(x). Under this representation, it

turns out that ‖f‖2H =
∑∞
m=1

c2m
µm

. This might seem surprising, since the right-hand side depends on ν but
the left-hand side does not. We explain this with the following result:

Lemma 6.8. Let ν be any finite measure that is supported on all of X . Then ‖f‖2H =
∑∞
m=1

1
µm

(
∫
X f(x)em(x)dν(x))2.

Proving Lemma 6.8

Heuristic proof of Lemma 6.8. Consider any finite partition of X into sets X1, . . . , Xn, with a representa-
tive xi ∈ Xi for each set. We will take increasingly fine-grained partitions such that

∑n
i=1

∫
Xi
|f(x′) −

f(xi)|dν(x′)→ 0, so in particular e.g.
∑n
i=1 f(xi)ν(Xi)→

∫
X f(x)dν(x).

Now we define (fν)i = ν(Xi)
1/2f(xi) and (Kν)ij = ν(Xi)

1/2ν(Xj)
1/2k(xi, xj). We can check that for

T = {x1, . . . , xn}, f>K−1f = f>ν K
−1
ν fν , independent of the choice of ν. This is the first hint that the choice

of ν doesn’t really matter. Now note that

f>ν K
−1
ν fν = f>ν

( ∞∑
m=1

µm

 ν(X1)1/2em(x1)
· · ·

ν(Xn)1/2em(xn)

 ν(X1)1/2em(x1)
· · ·

ν(Xn)1/2em(xn)

> )−1

fν (332)

(i)
≈ f>ν

( ∞∑
m=1

1

µm

 ν(X1)1/2em(x1)
· · ·

ν(Xn)1/2em(xn)

 ν(X1)1/2em(x1)
· · ·

ν(Xn)1/2em(xn)

> )fν (333)

=

∞∑
m=1

1

µm

( n∑
i=1

ν(Xi)f(xi)em(xi)
)2

(334)

(ii)
≈

∞∑
m=1

1

µm
(

∫
X
f(x)em(x)dν(x))2. (335)

Here (i) is the main “heuristic” step, where we are inverting the matrix on the premise that the different vectors
[ν(Xi)em(xi)] are nearly orthogonal, since 〈[ν(Xi)

1/2el(xi)], [ν(Xi)
1/2em(xi)]〉 =

∑
i ν(Xi)el(xi)em(xi) ≈∫

X
el(x)em(x)dν(x) = 0. The step (ii) also needs to be made rigorous but is essentially just taking a limit.

Now, we by definition have ‖f‖2H ≥ f>K−1f = f>ν K
−1
ν fν , which by the above can be made arbitrarily

close to A =
∑∞
m=1

1
µm

(
∫
X f(x)em(x)dν(x))2 by taking sufficiently fine partitions of {Xi}. This proves
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one direction of the lemma, i.e. that A ≤ ‖f‖2H. To prove the other direction, note that for any set
T = {x̂1, . . . , x̂n}, we can build our partitions such that they contain the x̂i as a subset of the representatives
xi in the partition. In this case, f [T ]>K[T ]−1f [T ] ≤ f>K−1f = f>ν K

−1
ν fν by Lemma 6.1. Taking the limit

then yields f [T ]>K[T ]−1f [T ] ≤ A. Since this holds for all T , we thus have ‖f‖2H ≤ A, which proves the other
direction and completes the lemma.

[Lecture 22]

7 Domain Adaptation under Covariate Shift

We now shift focus again, to a type of perturbation called covariate shift. We work in a classification or
regression setting where we wish to predict y from x, and make the assumption that p̃(y | x) and p∗(y | x)
are the same (the labeling function doesn’t change between train and test):

Assumption 7.1 (Covariate Shift). For a train distribution p̃ and test distribution p∗, we assume that
p̃(y | x) = p∗(y | x) for all x.

Thus the only thing that changes between train and test is the distribution of the covariates x (hence
the name covariate shift). We furthermore assume that we observe labeled samples (x1, y1), . . . , (xn, yn) ∼ p̃,
together with unlabeled samples x̄1, . . . , x̄m ∼ p∗. In the language of our previous setting, we could say that
D(p̃, p∗) = ‖p̃(y | x)− p∗(y | x)‖∞, ε = 0, and G = {p | p(x) = p0(x)} for some distribution p0 (obtained via
the unlabeled samples from p∗).

Beyond covariate shift, we will need to make some additional assumption, since if p̃(x) and p∗(x) have
disjoint supports then the assumption that p̃(y | x) = p∗(y | x) is meaningless. We will explore two different
assumptions:

1. Either we assume the p̃(x) and p∗(x) are known and not too different from each other, or

2. We assume that the model family is realizable: p∗(y | x) = pθ(y | x) for some θ.

This will lead to two different techniques: importance weighting and uncertainty estimation. We will also see
how to construct a “doubly robust” estimator that works as long as at least one of the assumptions holds.

7.1 Importance weighting

First assume that p̃(x) and p∗(x) are known. (We can generally at least attempt to estimate them from
unlabeled data, although if our model family is misspecified then our estimates might be poor.)

In a traditional setting, to minimize the loss on p̃(x) we would minimize

E(x,y)∼p̃[`(θ;x, y)], (336)

where ` is the loss function for either classification or regression. We can approximate this via the samples
from p̃ as

1

n

n∑
i=1

`(θ;xi, yi). (337)

To handle covariate shift we would like to instead minimize the expectation over p∗, but unfortunately we
can’t do this because we don’t have any outputs y drawn from p∗. The key insight that lets us get around
this is the following identity:

E(x,y)∼p∗
[
`(θ;x, y)

]
= E(x,y)∼p̃

[p∗(x)

p̃(x)
`(θ;x, y)

]
. (338)

Taking this identity as given for the moment, we can then approximate the expectation over p∗ via samples
from p̃ as follows:

1

n

n∑
i=1

p∗(xi)

p̃(xi)
`(θ;xi, yi). (339)
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This quantity is called the propensity-weighted training loss7, because each training sample is weighted by
how much more it looks like a sample from p∗ than from p̃.

To prove the identity, we make use of the covariate shift assumption:

E(x,y)∼p∗ [`(θ;x, y)] = E(x,y)∼p̃

[p∗(x, y)

p̃(x, y)
`(θ;x, y)

]
(340)

= E(x,y)∼p̃

[p∗(x)

p̃(x)

p∗(y | x)

p̃(y | x)
`(θ;x, y)

]
(341)

= E(x,y)∼p̃

[p∗(x)

p̃(x)
`(θ;x, y)

]
, (342)

where the final equality is by the covariate shift assumption.

Variance of the estimator. Even if p∗(x)
p̃(x) can be computed, the importance weighted estimator could

have high variance. This is because the weights p∗(xi)
p̃(xi)

could be large or potentially infinite.

For convenience assume that `(θ;x, y) ≤ B for all θ, x, y. We can compute (or rather, bound) the variance
as follows:

Varp̃[
p∗(x)

p̃(x)
`(θ;x, y)] = Ep̃[(p∗(x)/p̃(x))2`(θ;x, y)2]− Ep∗ [`(θ;x, y)]2 (343)

≤ Ep̃[(p∗(x)/p̃(x))2]B2 (344)

= (Dχ2(p̃‖p∗) + 1)B2, (345)

where Dχ2 is the χ2-divergence:

Dχ2(p̃‖p∗) def
=

∫
(p∗(x)− p̃(x))2

p̃(x)
dx =

∫
p∗(x)2

p̃(x)
dx− 1. (346)

The variance of the propensity-weighted loss is thus more or less controlled by the χ2-divergence between
source and target. To gain some intuition for how χ2 behaves, first note that is is always larger than KL
divergence (in the reverse direction, though I’m not sure the order of arguments is canonical):

Dkl(p
∗‖p̃) =

∫
p∗(x) log

p∗(x)

p̃(x)
dx (347)

≤
∫
p∗(x)

p∗(x)− p̃(x)

p̃(x)
dx (348)

=

∫
p∗(x)2

p̃(x)
dx− 1 = Dχ2(p̃‖p∗). (349)

Additionally, the χ2-divergence between two Gaussians is exponential in the difference between their means.
To see this, let Z denote the normalization constant of an isotropic Gaussian, and write

Dχ2(N (µ, I),N (µ′, I)) = −1 +
1

Z

∫
exp(

1

2
‖x− µ′‖22 − ‖x− µ‖22)dx (350)

= −1 +
1

Z

∫
exp(

1

2
(−‖x‖22 − (2µ′ − 4µ)>x+ ‖µ′‖22 − 2‖µ‖22)) (351)

= −1 +
1

Z

∫
exp(

1

2
(−‖x+ (µ′ − 2µ)‖22 + ‖µ′ − 2µ‖22 + ‖µ′‖22 − 2‖µ‖22)) (352)

= −1 + exp(‖µ′‖22 + ‖µ‖22 − 2µ>µ′) = −1 + exp(‖µ− µ′‖22). (353)

This is bad news for propensity weighting, since the weights blow up exponentially as the distributions move
apart.

7Also sometimes called the importance-weighted loss.
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Connection to causal inference. Propensity weighting can also be used in the context of causal inference.
Here we have a patient with covariates X, with treatment condition T (usually T ∈ {0, 1}), and outcome Y .
Our goal is to estimate the treatment effect, which, roughly speaking, is E[Y | T = 1]− E[Y | T = 0] (this
is wrong as stated and will be remedied below). We will see below how to do this by letting p∗0 and p∗1 be
the distributions where T = 0 and T = 1, respectively. However, first we need to set up the problem more
carefully.

To set the problem up more carefully, we use the potential outcomes framework. In this framework there
are actually two variables, Y (0) and Y (1), which are what the outcome would have been if we had set T = 0
or T = 1, respectively. This is potentially different from the distribution of the outcome conditional on T ,
since there could be factors that correlate T with Y (for instance, if T is smoking and Y is lung cancer, there
could be some gene that causes one to both be more likely to smoke and more likely to get lung cancer
that accounts for the strong empirical correlation between T and Y ; this was an actual objection raised by
Fisher!).

Of course, there are plenty of factors that create correlation between T and Y in an observational setting,
for instance sicker patients are more likely to be treated aggressively. We are okay with this as long as these
factors are observed as part of the covariates X. This leads us to the unconfoundedness assumption:

Assumption 7.2 (Unconfoundedness). The distribution (X,T, Y (0), Y (1)) is said to be unconfounded if
Y (0), Y (1) ⊥⊥ T | X. In other words, treatment and outcome should be independent conditional on the
covariates X.

The main challenge in the potential outcomes framework is that we only observe (X,T, Y (T )). In other
words, we only observe the outcome for the treatment T that was actually applied, which makes it difficult to
estimate E[Y (1)] or E[Y (0)]. We will deal with this by treating estimating E[Y (1)] as a domain adaptation
problem, and using propensity weighting. First note that, by unconfoundedness, we have

Ep̃[Y (1)] = EX∼p̃[Ep̃[Y (1) | X]] (354)

= EX∼p̃[Ep̃[Y (1) | X,T = 1]] (355)

= Ep∗1 [Y (T )], (356)

where we define p∗1 such that p∗1(x, t, y) = p̃(x)I[t = 1]p̃(y | x, t = 1); this has the same distribution over x as
p̃, but the treatment t = 1 is always applied. Since p̃(y | x, t) = p∗(y | x, t) almost surely, the covariate shift
assumption holds. We can thus estimate the expectation under p∗1 via propensity weighting:

Ep∗1 [Y (T )] = Ep̃
[p∗1(X,T )

p̃(X,T )
Y (T )

]
(357)

= Ep̃
[p∗1(T | X)

p̃(T | X)
Y (T )

]
(358)

= Ep̃
[ I[T = 1]

p̃(T | X)
Y (T )

]
. (359)

A similar calculation holds for computing Ep̃[Y (0)], for the distribution p∗0(x, t, y) = p̃(x)I[t = 0]p̃(y | x, t = 0).
Together, we have that

Ep̃[Y (1)− Y (0)] = Ep̃
[( I[T = 1]

p̃(T | X)
− I[T = 0]

p̃(T | X)

)
Y (T )

]
. (360)

Since the right-hand-side is in terms of Y (T ), it only involves observable quantities, and can be estimated
from samples as long as p̃(T | X) is known. This estimator is called inverse propensity weighting because it
involves dividing by the propensity weights p̃(T | X).

In the next section, we will explore an improvement on inverse propensity weighting called a doubly-robust
estimator.

[Lecture 23]
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7.2 Doubly-Robust Estimators

Recall that in the previous section we defined the inverse propensity weighted estimator

Ep̃[Y (1)− Y (0)] = Ep̃
[( I[T = 1]

p̃(T | X)
− I[T = 0]

p̃(T | X)

)
Y (T )

]
. (361)

To actually estimate the left-hand-side, we take the empirical average over n samples.
There are a couple of downsides of this estimator. One is that the variance of this estimator can be large.

Specifically, we can compute it as

1

n

(
Ep̃
[ 1

p̃(T = 1 | X)
Y (1)2 +

1

p̃(T = 0 | X)
Y (0)2

]
− Ep̃[Y (1)− Y (0)]2

)
. (362)

If the propensity weights are near zero then the variance explodes (similarly to the issue with χ2-divergence
that we saw earlier).

Another issue is that estimating the propensity weights themselves is non-trivial, and if we use the wrong
propensity weights, then the estimate could be arbitrarily wrong.

We will explore an idea that partially mitigates both issues; it reduces the variance when the propensity
weights are correct (although doesn’t avoid the exploding variance issue), and in some cases it produces a
correct estimate even if the propensity weights are wrong.

The basic idea is as follows: suppose that we have some prediction Ȳ (1, X), Ȳ (0, X) of what will happen
under T = 1, T = 0 conditioned on X. Since these predictions only require knowing X and not T , an
alternate estimate of the treatment effect can be obtained by adding and subtracting Ȳ :

Ep̃[Y (1)− Y (0)] = Ep̃[Ȳ (1, X)− Ȳ (0, X)] + Ep̃[(Y (1)− Ȳ (1, X))− (Y (0)− Ȳ (0, X))] (363)

= Ep̃[Ȳ (1, X)− Ȳ (0, X)] + Ep̃
[( I[T = 1]

p̃(T | X)
− I[T = 0]

p̃(T | X)

)
(Y (T )− Ȳ (T,X))

]
. (364)

In other words, we first use our prediction Ȳ to form a guess of the average treatment effect, then use inverse
propensity weighting to correct the guess so as to obtain an unbiased estimate. This can yield substantial
improvements when Y (T ) − Ȳ (T,X) is much smaller in magnitude than Y (T ). For instance, a patient’s
cholesterol after taking a cholesterol-reducing drug is still highly-correlated with their initial cholesterol, so in
that case we can take Ȳ (T,X) to be the pre-treatment cholesterol level. Even though this is independent of
T it can substantially reduce the variance of the estimate! (We will formally bound the variance below.)

Bias of the estimate. Call the prediction Ȳ unbiased if E[Y | X,T ] = Ȳ (T,X). The first key property of
(364) is that it is unbiased as long as either Ȳ is unbiased, or the propensity weights are correct. Indeed,
if the prediction is unbiased then the first term is the average treatment effect while the second term is
zero. Conversely, if the propensity weights are correct then the second term exactly estimates the difference
between the predicted and true treatment effect. Correspondingly, (364) is called a doubly-robust estimator.

We can actually say more about the bias. Suppose that instead of the true propensity weights, we have an
incorrect guess p̂(t | x). Then the bias of the estimate is the difference between Ep̃[Y (1)− Y (0)] and (364),
which is

Ep̃[Y (1)− Y (0)]− E[Ȳ (1, X)− Ȳ (0, X)]− Ep̃
[( I[T = 1]

p̂(T | X)
− I[T = 0]

p̂(T | X)

)
(Y (T )− Ȳ (T,X))

]
(365)

= Ep̃
[
(Y (1)− Ȳ (1, X))

(
1− I[T = 1]

p̂(t = 1 | X)

)
+ (Y (0)− Ȳ (0, X))

(
1− I[T = 0]

p̂(t = 0 | X)

)]
. (366)

Focusing on the first term, and using the independence of T and Y conditioned on X, we have

Ep̃
[
(Y (1)− Ȳ (1, X))

(
1− I[T = 1]

p̂(t = 1 | X)

)]
(367)

= Ep̃
[
(E[Y (1) | X]− Ȳ (1, X))

(
1− p̃(t = 1 | X)

p̂(t = 1 | X)

)
| X
]

(368)

≤ Ep̃[(E[Y (1) | X]− Ȳ (1, X))2]1/2Ep̃
[(

1− p̃(t = 1 | X)

p̂(t = 1 | X)

)2]1/2
, (369)
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meaning that the bias of the estimator is the product of the biases of Ȳ and p̂ (measured as the expected
squared errors in (369)).

Variance of the estimate. We can obtain a somewhat similar relation for the variance. Usually the
variance of Ȳ (1, X)− Ȳ (0, X) is small compared to the propensity-weighted term, so again focusing on the
T = 1 case we have

Var
[
(Y (1)− Ȳ (1, X))

I[T = 1]

p̂(t = 1 | X)

]
≤ E

[
EY [(Y (1)− Ȳ (1, X))2 | X]

p̃(t = 1 | X)

p̂(t = 1 | X)2

]
. (370)

The variance is substantially reduced when Y (1) is close to Ȳ (1, X). We cannot always hope for this, e.g. if
Y has a large amount of intrinsic variance even conditioned on X. But in many cases even trivial Ȳ can
predict most of the variance in Y—for instance, for any chronic disease the patient’s post-treatment status is
well-predicted by their pre-treatment status. And the value of a stock tomorrow is well-predicted by its value
today.

Semi-parametric estimation. It may seem difficult to estimate Ȳ (·, X) and p̃(t = 1 | X), since any
parametric model could be mis-specified and lead to biased estimates. One idea is to estimate these both
non-parametrically, and then apply the doubly-robust estimator above. This is an instance of semi-parametric
estimation, because while we estimate Ȳ and p̃(t | X) non-parametrically, the doubly-robust estimator itself
is parametric (i.e a simple sample estimate of the mean), and in some cases we obtain non-parametric rates.
This is explored in detail in Nie and Wager (2017) for estimating conditional average treatment effects; we
describe the basic idea here. Since the squared error in an estimate is Bias2 + Variance/n, the bias will
dominate the error in the doubly-robust estimator as long as the variance doesn’t explode (of course, the
variance can often explode if the propensity weights are too close to 0 or 1, and the following idea won’t help
in that case).

We saw above that the bias of the doubly-robust estimator is the product of the biases in Ȳ and p̂,
which are both given as expected squared errors between the true and estimated value. In non-parametric
estimation, we typically get convergence rates of O(n−α) for some α < 1/2 (note that α = 1/2 is what we
typically get for parametric estimation). The parameter α typically depends on the dimension of the problem
and the smoothness of the function class we wish to estimate. Since the doubly-robust bias is the product
of the biases, we end up with a bias of O(n−2α) as long as Ȳ and p̂ each converge at a n−α rate. As long
as α > 1/4, this yields a parametric rate (the variance term will then asymptotically dominate as it only
converges at 1/

√
n).
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A Properties of Statistical Discrepancies

A.1 Total variation distance

A.2 Wasserstein distance

B Concentration Inequalities

B.1 Proof of Chebyshev’s inequality (Lemma 2.1)

Let I[E] denote the indicator that E occurs. Then we have

|EX∼p[X | E]− µ| = |EX∼p[(X − µ)I[E]]|/P[E] (371)

≤
√
EX∼p[(X − µ)2] · EX∼p[I[E]2]/P[E] (372)

≤
√
σ2 · P[E]/P[E] = σ/

√
P[E]. (373)

In particular, if we let E0 be the event that X ≥ µ + σ/
√
δ, we get that σ/

√
δ ≤ σ/

√
P[E0], and hence

P[E0] ≤ δ, which proves the first part of the lemma.
For the second part, if P[E] ≤ 1

2 then (373) already implies the desired result since σ/
√
δ ≤ σ

√
2(1− δ)/δ

when δ ≤ 1
2 . If P[E] ≥ 1

2 , then consider the same argument applied to ¬E (the event that E does not occur).
We get

|EX∼p[X | E]− µ| = 1− P[E]

P[E]
|EX∼p[X | ¬E]− µ| (374)

≤ 1− P[E]

P[E]
· σ/

√
1− P[E]. (375)

Again the result follows since σ
√

1− δ/δ ≤ σ
√

2(1− δ)/δ when δ ≥ 1
2 .
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B.2 Proof of d-dimensional Chebyshev’s inequality (Lemma 2.8)

C Proof of Lemma 2.14

Since (ρ, ε)-resilience is equivalent to ( 1−ε
ε ρ, 1− ε)-resilience, it suffices to show that (1− ε, 1−ε

ε ρ)-resilience
is equivalent to (18). Suppose that E is an event with probability ε, and let v be such that ‖v‖∗ = 1 and
〈E[X − µ | E], v〉 = ‖E[X − µ | E]‖. Then we have

‖E[X − µ | E]‖ = 〈E[X − µ | E], v〉 (376)

= 〈E[〈X − µ, v〉 | E] (377)

(i)

≤ E[〈X − µ, v〉 | 〈X − µ, v〉 ≥ τε(v)] (378)

(18)

≤ 1− ε
ε

ρ. (379)

Here (i) is because 〈X − µ, v〉 is at least as large for the ε-quantile as for any other event E of probability ε.
This shows that (18) implies (1− ε, 1−ε

ε ρ)-resilience. For the other direction, given any v let Ev denote the
event that 〈X − µ, v〉 ≥ τε(v). Then Ev has probability ε and hence

E[〈X − µ, v〉 | 〈X − µ, v〉 ≥ τε(v)] = E[〈X − µ, v〉 | Ev] (380)

= 〈E[X − µ | Ev], v〉 (381)

(ii)

≤ ‖E[X − µ | Ev]‖ (382)

(iii)

≤ 1− ε
ε

ρ, (383)

where (ii) is Hölder’s inequality and (iii) invokes resilience. Therefore, resilience implies (18), so the two
properties are equivalent, as claimed.

D Proof of Lemma 2.15

Let E+ be the event that 〈xi−µ, v〉 is positive, and E− the event that it is non-negative. Then P[E+]+P[E−] =
1, so at least one of E+ and E− has probablity at least 1

2 . Without loss of generality assume it is E+. Then
we have

Ex∼p[|〈x− µ, v〉|] = 2Ex∼p[max(〈x− µ, v〉, 0)] (384)

= 2P[E+]Ex∼p[〈x− µ, v〉 | E+] (385)

≤ 2P[E+]‖Ex∼p[x− µ | E+]‖ ≤ 2ρ, (386)

where the last step invokes resilience applies to E+ together with P[E+] ≤ 1. Conversely, if p has bounded
1st moments then

E[〈X − µ, v〉 | 〈X − µ, v〉 ≥ τ1/2(v)] ≤ E[|〈X − µ, v〉|]/P[〈X − µ, v〉 ≥ τ1/2(v)] (387)

= 2E[|〈X − µ, v〉|] ≤ 2ρ, (388)

so p is (2ρ, 1
2 )-resilient by Lemma 2.14.
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