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Tangent Kernel

Talked last time about random feature models and kernels, e.g.
k(x, y) = Eφ[φ(x)φ(y)]

Neural networks (or any parameterized family) also look locally like
kernels
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Tangent Kernel

Talked last time about random feature models and kernels, e.g.
k(x, y) = Eφ[φ(x)φ(y)]

Neural networks (or any parameterized family) also look locally like
kernels

For a parameterized function fθ : X → R, define the tangent kernel

k(x, y; θ) = 〈∇fθ(x),∇fθ(y)〉

For neural nets, basically sum over all edges in network. Full rank as
long as p� n.
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Neural Tangent Kernel

k(x, y; θ) = 〈∇fθ(x),∇fθ(y)〉

Depends on θ: varies with random initialization, changes over course
of training
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Neural Tangent Kernel

k(x, y; θ) = 〈∇fθ(x),∇fθ(y)〉

Depends on θ: varies with random initialization, changes over course
of training

Infinite-width limit: independent of initialization (concentration of
measure)

Small learning rate limit: changes negligibly over training

Jacot et al. (2018) take both limits at once and characterize the
resulting kernel

• This was the first use of the phrase neural tangent kernel
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Realistic Regimes

The infinite-width limit is reasonable: most networks have large width

Small learning rate is not: effectively implies that no feature learning
happens (obviously false)

Lewkowycz et al. (2020) go beyond this: catapult mechanism
• Takes effect at intermedate learning rates (diverge at high

learning rate)

• Removes high-curvature (≈ high-variance) directions

3



Evidence for Catapult Mechanism
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Return to Linearity

Math also predicts good linear approximation after log(n) steps.

Supported empirically:
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Bias-Variance Decomposition

Learned classifier f(x) (depends on dataset D), predict y
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Bias-Variance Decomposition

Learned classifier f(x) (depends on dataset D), predict y

Recall bias-variance decomposition for mean-squared error:

ED[(y − f(x))2]︸ ︷︷ ︸
MSE

= (y − ED[f(x)])
2︸ ︷︷ ︸

Bias2

+VarD[f(x)]︸ ︷︷ ︸
Variance

Expectation taken over randomness in training data D (or over ran-
dom seed, etc.)

Intuition: more complex models have lower bias but higher variance
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Bias-Variance for Modern Neural Nets

Classic bias-variance decomposition appears to contradict modern
practice: bigger models generalize better, rather than overfitting.
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Bias-Variance for Modern Neural Nets

Classic bias-variance decomposition appears to contradict modern
practice: bigger models generalize better, rather than overfitting.

Proposed solution: double descent curve

Belkin et al., 2018
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Double Descent on MNIST

Belkin et al., 2018
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Computing Bias+Variance (Fixed Design)

How to compute from data? (Only one dataset D)
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Computing Bias+Variance (Fixed Design)

How to compute from data? (Only one dataset D)

Fixed design: hold X1:n fixed, imagine y1:n vary

Assuming each yi has Gaussian error with variance σ2, can compute
e.g. for linear regression

(cf. previous few lectures)

Requires lots of assumptions, so also consider random design
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Computing Bias+Variance (Random Design)

How to compute from data? (Only one dataset D)
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Computing Bias+Variance (Random Design)

How to compute from data? (Only one dataset D)

Split data into two halves D1,D2

Train classifiers f1, f2

Unbiased estimate of variance: 1
2 (f1(x)− f2(x))

2

Average over multiple random splits to get better estimate

Compute bias via Bias2 = MSE−Variance
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Theoretical Characterization (Fixed Design)

Mei and Montanari, 2019
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Theoretical Characterization (Fixed Design)

Mei and Montanari, 2019

Fixed-design: attributes some variance to bias.
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Double Descent on CIFAR

Nakkiran et al., 2019
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Unimodal Risk in in NLP

Nakkiran et al., 2019
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Mysteries

Sometimes need label noise to produce
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Mysteries

Sometimes need label noise to produce

More often get monotonic or unimodal behavior in practice

Model sizes small relative to practice

Is there a simpler underlying phenomenon?
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Explanation: Revisiting Bias-Variance

CIFAR-100

Phenomenon: monotonic bias + unimodal variance

15



Robustness of the Phenomenon

CIFAR-10 Fashion-MNIST

ResNext29 VGG11
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Three Possible Behaviors
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Bias-Variance for Cross-Entropy

Most networks trained with cross-entropy loss, not MSE

Generalized bias-variance decomposition for Bregman divergence

Pfau, 2013
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Characterizing Sources of Error

MSE: Get unbiased estimate, but how much finite-sample variability?
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Characterizing Sources of Error

MSE: Get unbiased estimate, but how much finite-sample variability?

Idea: replicate entire experiment on two halves of training data

Cross-entropy: harder (no unbiased estimate)
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Take-away

Use computer simulation to assess all sources of error
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Revisiting Fixed-Design Case

Mei and Montanari, 2019
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Revisiting Fixed-Design Case

Mei and Montanari, 2019

Fixed-design: attributes some variance to bias.
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Effect of Depth
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More Robustness Checks
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Ongoing Work

Extensions to classification (e.g. Montanari, Ruan, Sohn, Yan 2020)

Bias-variance for other settings (e.g. Yu, Yang, Dobriban, Steinhardt,
Ma 2021)

Characterizing when more data hurts (e.g. Raghunathan, Xie, Yang,
Duchi, Liang 2020)

Using random features models to explain scaling laws (e.g. Bahri,
Dyer, Kaplan, Lee, Sharma 2021)
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