Lecture 24: Robustness of Neural Networks

Jacob Steinhardt

Part I: OOD Robustness

Motivation

Folklore: ML does poorly OOD

Why and when? Can we predict it?

Motivation

Folklore: ML does poorly OOD

Why and when? Can we predict it?

Model works Model does poorly

Geirhos et al., 2018; Ford et al., 2019

How brittle are ML models?

Are we overfitting to IID accuracy?

How brittle are ML models?

Are we overfitting to IID accuracy?

Measurement: plot |ID vs. OOD accuracy

ImageNet-C ImageNet-v2

ImageNet-C Acc vs. Clean Acc _ ImageNet
[] 1.52*x +-0.721 R2=0.811 E:‘?‘ 80-
80% 1—|1‘
s |
B
e e 4
60% = ?0
o * . o
2 []
<
S 2o Xe, 5)
% 40% . P o 60
2 «o o O
& ™ I
£ [])
T 2% @ o
0 0 L 504
= |
]
0% < 40
60.00% 65.00% 70.00% 75.00% 80.00% 85.00%

60 ' 70 ' 80

Clean Acc Original test accuracy (top-1, %)

Hendrycks and Dietterich (2019) Recht et al. (2019)

How brittle are ML models?

Are we overfitting to IID accuracy?

Measurement: plot |ID vs. OOD accuracy

ImageNet-C ImageNet-v2
ImageNet-C Acc vs. Clean Acc _ ImageNet
[] 1.52*x +-0.721 R?=0.811 E:‘?‘ 801
80% 'I_Ii‘
s
B
60% ° - 701
8 ¢ eo® g 1
< [
(‘é 40% o:."‘. 360_
E ame - E 501
= |
0]
0% = 40 ; 1 ; 1 '
60.00% 65.00% 70.00% 75.00% 80.00% 85.00% 60 70 a0
Clean Acc Original test accuracy (top-1, %)
Hendrycks and Dietterich (2019) Recht et al. (2019)

Measurement completely changed the conversation
e From “Is |ID useful at all?” to “Is anything else useful?”

What else helps robustness?

On ImageNet-C, some things seem to help:
e Larger models, data augmentation, self-attention, pre-training

What else helps robustness?

On ImageNet-C, some things seem to help:
e Larger models, data augmentation, self-attention, pre-training

Model
Orig.
IN-C
Trend

Larger

ResNet-50 ResNet-152

76.1
41.6

78.3
47.8 (+6.2)
+4.7

Self-Attention

SE_ResNet-152
78.7

50.9 (+9.3)
+5.5

Data Aug

SIN-trained
74.6
47.9 (+6.3)
-3.2

AugMix
77.6

48.3 (+6.7)
+3.2

Pre-training

WSL
85.4

65.5 (+23.9)
+19.7

What else helps robustness?

On ImageNet-C, some things seem to help:
e Larger models, data augmentation, self-attention, pre-training

Larger Self-Attention Data Aug Pre-training
Model ResNet-50 ResNet-152 SE_ResNet-152 SIN-trained AugMix WSL
Orig. 76.1 78.3 78.7 74.6 77.6 85.4
IN-C 41.6 47.8 (+6.2) 50.9 (+9.3) 47.9 (+6.3) 48.3 (+6.7) 65.5 (+23.9)
Trend +4.7 +5.5 -3.2 +3.2 +19.7

Do these really help? Many types of shift...

The Sieve of Variability

ImageNet-v2 ImageNet-

Hendrycks and Dietterich, 2019; Hendrycks et al., 2019, 2020; Recht et al., 2019

Applying the Sieve

Hypotheses: larger models, data aug, self-attn, pre-training

Applying the Sieve

Hypotheses: larger models, data aug, self-attn, pre-training

Do they hold up on other datasets?
e ImageNet-A: yes
e ImageNet-v2: unclear
e ImageNet-R: yes, except self-attention

Applying the Sieve

Hypotheses: larger models, data aug, self-attn, pre-training

Do they hold up on other datasets?
e ImageNet-A: yes
e ImageNet-v2: unclear
e ImageNet-R: yes, except self-attention

Larger Self-Attention Data Aug Pre-training
Model ResNet-50 ResNet-152 SE_ResNet-152 SIN-trained AugMix WSL
Orig. 76.1 78.3 78.7 74.6 77.6 85.4
IN-C 41.6 47.8 50.9 47.9 48.3 65.5
IN-R 36.1 41.3 40.0 41.5 41.1 75.8

“The Many Faces of Robustness”
Hendrycks et al. (2020)

Revisiting Pre-training

Two distributions:
e WSL: 1B instagram images (1000x data)
e ImageNet-21K: additional ImageNet classes (10x data)

“The Many Faces of Robustness”

Hendrycks et al. (2020)
7

Revisiting Pre-training

Two distributions:
e WSL: 1B instagram images (1000x data)
e ImageNet-21K: additional ImageNet classes (10x data)

Model ResNet-50 WSL IN-21k
IN-R 36.1 75.8 37.2
IN-A 2.2 454 11.4

May be about overlap rather than amount of data

“The Many Faces of Robustness”
Hendrycks et al. (2020)

7

Tightening the Sieve

DeepFashion Remixed StreetView StoreFronts

Viewpoint

Occlusion

(e TR
Watermelon

e DFR: size, occlusion, viewpoint, zoom

e SVSF: hardware, year, location

“The Many Faces of Robustness”

Hendrycks et al. (2020)
8

Tightening the Sieve

Size Occlusion Viewpoint Zoom
Network IID § OOD Small Large, Slight/None Heavy No Wear Side/Back Medium Large
ResNet-50 77.6] 55.1 | 394 73.0 51.5 41.2 | 50.5 63.2 48.7 733
+ ImageNet-21K Pretraining|80.8| 58.3 | 40.0 73.6 55.2 430 | 63.0 67.3 505 739
+ SE (Self-Attention) 77.41 553 | 389 72.7 52.1 409 | 529 64.2 478 728
+ Random Erasure 78.9] 56.4 | 399 75.0 52.5 426 | 534 66.0 488 734
+ Speckle Noise 78.9]1 55.8 | 38.4 74.0 52.6 40.8 55.7 63.8 478 73.6
+ Style Transfer 80.2] 57.1 | 37.6 76.5 54.6 43.2 584 65.1 492 725
+ DeepAugment 79.71 56.3 | 38.3 74.5 52.6 42.8 54.6 65.5 495 727
+ AugMix 80.4) 57.3 | 394 748 553 42.8 57.3 66.6 490 73.1
ResNet-152 (Larger Models) |80.0] 57.1 | 40.0 75.6 52.3 420 | 57.7 65.6 489 744

Similar results for SVSF (but smaller gap)

“The Many Faces of Robustness”
Hendrycks et al. (2020)

Does anything help?

Previous shifts had style component (also harder)

Data augmentation highly successful on these, but not for geography,
year, etc.

10

Does anything help?

Previous shifts had style component (also harder)

Data augmentation highly successful on these, but not for geography,
year, etc.

Robustness is multivariate:
e Correlated, but multiple directions of variaton
e Need more datasets measuring new shifts

e Need new methods

10

rotate

Data Augmentation

Xaugmix

11

Data Augmentation

Original DeepAugment

>

12

Part |l: Adversarial Robustness

13

ML: Powerful But Fragile

ML is state-of-the-art in many domains, such as vision:

100 e
- Human

. 80././ e Neural Network
@)
@w 060
-
O
O 40
<C

20

0

2010 2011 2012 2013 2014 2015 2016

Year

ML: Powerful But Fragile

ML is state-of-the-art in many domains, such as vision:

100 _
- Human
. 80./,/ e Neural Network
% 60 e Adversary
| -
o
O 40
< 50 0% accuracy
against attacker
Qe ® ® ® o ® B

2010 2011 2012 2013 2014 2015 201

Year

14

Machine Learning is Insecure

“panda” “gibbon”
57.7% confidence [Szegedy et al. '14] 99.3% confidence

15

Machine Learning is Insecure

“panda” “gibbon”

57.7% confidence [Szegedy et al. "14] 99.3% confidence
Self-driving cars: Speech recognition: Malware:

o VoiceHack o
Ol Google, Tlurn On Airplane Mode

Li;ﬁl upn l' .,-::zi:{ll :\' -
i
I s

|

stop — yield noise — “Ok Google” malware — benign
[Evtimov et al. '17] [Carlini et al. '16] [Grosse et al. '16]

15

Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. '14]

16

Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. '14]

— .| adversarial training

\ [Goodfellow et al. "15]

| defensive distillation
[Papernot et al. '15]

16

Arms Races

Naive evaluation against attacks insufficient:

discovery O
I —
[Szegedy et al. '14]

adversarial training
[Goodfellow et al. "15]

e

@
transfer attacks | &

-

[Papernot et al. '17]

defensive distillation
[Papernot et al. '15]

.

iterative attacks
[Carlini & Wagner '16]

16

Arms Races

Naive evaluation against attacks insufficient:

discovery O
I —
[Szegedy et al. '14]

adversarial training
[Goodfellow et al. "15]

e

@
transfer attacks | &

-

[Papernot et al. '17]

defensive distillation
[Papernot et al. '15]

.

iterative attacks
[Carlini & Wagner '16]

o o o (1004 papers)

16

Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. '14]

transfer attacks
[Papernot et al. '17]

I

adversarial training
[Goodfellow et al. "15]

e

./
.

-

defensive distillation
[Papernot et al. '15]

iterative attacks
[Carlini & Wagner '16]

.

o o o (100+ papers)

. 2222 2.2 2213/

bypassing 10 defenses
[Carlini & Wagner '17]

16

Take-away

Relying on naive evaluation
leads to a security arms race
that defenders often lose!

17

Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples

Anish Athalye”' Nicholas Carlini*? David Wagner *

Abstract

We identify obfuscated gradients, a kind of gradi-
ent masking, as a phenomenon that leads to a false
sense of security in defenses against adversarial
examples. While defenses that cause obfuscated
gradients appear to defeat iterative optimization-
based attacks, we find defenses relying on this
effect can be circumvented. We describe charac-
teristic behaviors of defenses exhibiting the effect,
and for each of the three types of obfuscated gra-
dients we discover, we develop attack techniques
to overcome it. In a case study, examining non-
certified white-box-secure defenses at ICLR 2018,
we find obfuscated gradients are a common occur-
rence, with 7 of 9 defenses relying on obfuscated
gradients. Our new attacks successfully circum-
vent 6 completely, and 1 parually, in the original
threat model each paper considers.

apparent robustness against iterative optimization attacks:
obfuscated gradients, a term we define as a special case of
gradient masking (Papernot et al., 2017). Without a good
gradient, where following the gradient does not successfully
optimize the loss, iterative optimization-based methods can-
not succeed. We identify three types of obfuscated gradients:
shattered gradients are nonexistent or incorrect gradients
caused either intentionally through non-differentiable op-
erations or unintentionally through numerical instability;
stochastic gradients depend on test-time randomness: and
vanishing/exploding gradients 1n very deep computation
result in an unusable gradient.

We propose new techniques to overcome obfuscated gradi-
ents caused by these three phenomena. We address gradient
shattering with a new attack technique we call Backward
Pass Differentiable Approximation, where we approximate
derivatives by computing the forward pass normally and
computing the backward pass using a differentiable approx-

imating nf the finctinn We croamianite oradieate nf sandoma

18

3.1. Identifying Obfuscated & Masked Gradients

Some defenses intentionally break gradient descent and
cause obfuscated gradients. However, others defenses unin-
tentionally break gradient descent, but the cause of gradient
descent being broken is a direct result of the design of the
neural network. We discuss below characteristic behaviors
of defenses which cause this to occur. These behaviors may
not perfectly characterize all cases of masked gradients.

One-step attacks perform better than iterative attacks.
Iterative optimization-based attacks applied in a white-box
setting are strictly stronger than single-step attacks and
should give strictly superior performance. If single-step
methods give performance superior to iterative methods, it
is likely that the iterative attack is becoming stuck in iis
optimization search at a local minimum.

Black-box attacks are better than white-box attacks.
The black-box threat model is a strict subset of the white-
box threat model, so attacks in the white-box setting should
perform better; if a defense is obfuscating gradients, then
black-box attacks (which do not use the gradient) often per-
form better than white-box attacks (Papemot et al., 2017).

Unbounded attacks do not reach 100% success. With
unbounded distortion, any classifier should have 0% robust-
ness to attack. If an attack does not reach 100% success
with sufficiently large distortion bound, this indicates the
attack is not performing optimally against the defense, and
the attack should be improved.

Random sampling finds adversarial examples. Bruie-
force random search (e.g., randomly sampling 10° or more
points) within some e-ball should not find adversarial exam-
ples when gradient-based attacks do not.

Increasing distortion bound does not increase success.
A larger distortion bound should monotonically increase
attack success rate; significantly increasing distortion bound
should result in significantly higher attack success rate.

19

ON EVALUATING ADVERSARIAL ROBUSTNESS

Nicholas Carlini', Anish J"Lthalyez, MNicolas Papernntl_. Wieland Brendel®, Jonas Rauber®,
Dimitris Tsipras?, lan Goodfellow!, Aleksander Madry?, Alexey Kurakin!

! Google Brain 2 MIT # University of Tiibingen

" List of authors is dynamic and subject to change. Authors are ordered according
to the amount of their contribution to the text of the paper.

1902.06705v2 [cs.LG] 20 Feb 2019

arXiv

Please direct correspondence to the GitHub repository
https://github.com/evaluating-adversarial -robustness/adv-eval -paper

Last Update: 18 February, 2019.

3.1 CoumMmoN SEVERE FLAaws

There are several common severe evaluation flaws which have the potential to completely in-
validate any robustness claims. Any evaluation which contains errors on any of the following
items is likelv to have fundamental and irredeemable flaws. Evaluations which intentionally
deviate from the advice here may wish to justify the decision to do so.

+ 53 Do not mindlessly follow this list: make sure to still think about the evaluation.
e §2.2 State a precise threat model that the defense is supposed to be effective under.

— The threat model assumes the attacker knows how the defense works.

— The threat model states attacker’s goals, knowledge and capabilities.

— For security-justified defenses, the threat model realistically models some adversary.
For worst-case randomized defenses, the threat model captures the perturbation space.
— Think carefully and justify any £, bounds placed on the adversary.

& §2.5 Perform adaptive attacks to give an upper bound of robustness.

— The attacks are given access to the full defense, end-to-end.
— The loss function is changed as appropriate to cause misclassification.
— §4.3 Focus on the strongest attacks for the threat model and defense considered.

+ 32.6 Release pre-trained models and source code.
— Include a clear installation guide, including all dependencies.
— There is a one-line script which will classify an input example with the defense.
s 54.2 Report clean model accuracy when not under attack.
— For defenses that abstain or reject inputs, generate a ROC curve.
e §5.2 Perform basic sanity tests on attack success rates.
— Verify iterative attacks perform better than single-step attacks.
— Verify increasing the perturbation budget strictly increases attack success rate.
— With “high” distortion, model accuracy should reach levels of random guessing.
¢ §5.3 Generate an attack success rate vs. perturbation budget curve.
— Verify the x-axis extends so that attacks eventually reach 100% success.
— For unbounded attacks, report distortion and not success rate.
¢ §5.4 Verify adaptive attacks perform better than any other.

— Compare success rate on a per-example basis, rather than averaged across the dataset.
— Ewvaluate against some combination of black-bax, transfer, and random-noise attacks.

® §5.7 Describe the attacks applied, including all hyperparameters.

3.2 CoumMON PITFALLS

There are other common pitfalls that may prevent the detection of ineffective defenses.
This list contains some potential pitfalls which do not apply to large categories of defenses.
However, if applicable, the items below are still important to carefully check they have been
applied correctly.

§4.3 Apply a diverse set of attacks (especially when training on one attack approach).
— Do not blindly apply multiple (nearly-identical) attack approaches.

21

3.1 CoumMmoN SEVERE FLAaws

There are several common severe evaluation flaws which have the potential to completely in-
validate any robustness claims. Any evaluation which contains errors on any of the following
items is likelv to have fundamental and irredeemable flaws. Evaluations which intentionally
deviate from the advice here may wish to justify the decision to do so.

+ 53 Do not mindlessly follow this list: make sure to still think about the evaluation.
e §2.2 State a precise threat model that the defense is supposed to be effective under.

— The threat model assumes the attacker knows how the defense works.

— The threat model states attacker’s goals, knowledge and capabilities.

— For security-justified defenses, the threat model realistically models some adversary.
For worst-case randomized defenses, the threat model captures the perturbation space.
— Think carefully and justify any £, bounds placed on the adversary.

& §2.5 Perform adaptive attacks to give an upper bound of robustness.

— The attacks are given access to the full defense, end-to-end.
— The loss function is changed as appropriate to cause misclassification.
— §4.3 Focus on the strongest attacks for the threat model and defense considered.

+ 32.6 Release pre-trained models and source code.
— Include a clear installation guide, including all dependencies.
— There is a one-line script which will classify an input example with the defense.
s 54.2 Report clean model accuracy when not under attack.
— For defenses that abstain or reject inputs, generate a ROC curve.
e §5.2 Perform basic sanity tests on attack success rates.
— Verify iterative attacks perform better than single-step attacks.
— Verify increasing the perturbation budget strictly increases attack success rate.
— With “high” distortion, model accuracy should reach levels of random guessing.
¢ §5.3 Generate an attack success rate vs. perturbation budget curve.
— Verify the x-axis extends so that attacks eventually reach 100% success.
— For unbounded attacks, report distortion and not success rate.
¢ §5.4 Verify adaptive attacks perform better than any other.

— Compare success rate on a per-example basis, rather than averaged across the dataset.
— Ewvaluate against some combination of black-bax, transfer, and random-noise attacks.

® §5.7 Describe the attacks applied, including all hyperparameters.

3.2 CoumMON PITFALLS

There are other common pitfalls that may prevent the detection of ineffective defenses.
This list contains some potential pitfalls which do not apply to large categories of defenses.
However, if applicable, the items below are still important to carefully check they have been
applied correctly.

§4.3 Apply a diverse set of attacks (especially when training on one attack approach).
— Do not blindly apply multiple (nearly-identical) attack approaches.

— Check that the gradient-free attacks succeed less often than gradient-based attacks.
— Carefully investigate attack hyperparameters that affect success rate.
e §4.5 Perform a transferability attack using a similar substitute model.

— Select a substitute model as similar to the defended model as possible.
— Generate adversarial examples that are initially assigned high confidence.
— Check that the transfer attack succeeds less often than white-box attacks.

e §4.6 For randomized defenses, properly ensemble over randomness.

— Verify that attacks succeed if randomness is assigned to one fixed value.
— State any assumptions about adversary knowledge of randomness in the threat model.

* §4.7 For non-differentiable components, apply differentiable techniques.
— Discuss why non-differentiable components were necessary.
— Verify attacks succeed on undefended model with those non-differentiable components.
— Consider applying BPDA (Athalye et al., 2018) if applicable.

o §4.8 Verify that the attacks have converged under the selected hyperparameters.

— Verify that doubling the number of iterations does not increase attack success rate.
— Plot attack effectiveness versus the number of iterations.
— Explore different choices of the step size or other attack hvperparameters.

o §4.9 Carefully investigate attack hyperparameters and report those selected.

— Start search for adversarial examples at a random offset.
— Investigate if attack results are sensitive to any other hyperparameters.

* §5.1 Compare against prior work and explain important differences.
— When contradicting prior work, clearly explain why differences occur.
— Attempt attacks that are similar to those that defeated previous similar defenses.
— When comparing against prior work, ensure it has not been broken.

e 54,10 Test broader threat models when proposing general defenses. For images:

— Apply rotations and translations (Engstrom et al., 2017).
— Apply common corruptions and perturbations (Hendrycks & Dietterich, 2018).
— Add Gaussian noise of increasingly large standard deviation (Ford et al., 2019).

3.3 SPECIAL-CASE PITFALLS

The following items apply to a smaller fraction of evaluations. Items presented here are
included because while they may diagnose flaws in some defense evaluations, they are not
necessary for many others. In other cases, the tests presented here help provide additional
evidence that the evaluation was performed correctly.

o §4.1 Investigate if it is possible to use provable approaches.
— Examine if the model is amenable to provable robustness lower-bounds.
e 54,11 Attack with random noise of the correct norm.

— For each example, try 10,000+ different choices of random noise.
— Check that the random attacks succeed less-often than white-box attacks.

e §4.12 Use both targeted and untargeted attacks during evaluation.

— State svnlicithe which attack tvne e haine naed

21

Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

22

Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

stop — yield turtle — rifle banana — toaster
[Evtimov et al. '17] [Athalye et al. '17] [Brown et al. '17]

22

Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

1 i\ B W\

stop — yield turtle — rifle banana — toaster
[Evtimov et al. '17] [Athalye et al. '17] [Brown et al. '17]

Most defenses fail within weeks (arms race), but a few have lasted.

22

Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

X l i o \ .
stop — yield turtle — rifle banana — toaster
[Evtimov et al. '17] [Athalye et al. '17] [Brown et al. '17]

Most defenses fail within weeks (arms race), but a few have lasted.

What makes them different?

Details of the robust model

Obtained via adversarial training (train on adversarial images)

Generate training images via gradient ascent on cross-entropy loss

If too few gradient steps, model learns to fool optimizer instead of
being truly robust

23

Accuracy

Accuracy vs. gradient steps

N
(@)
|
o)

N
o

/

Qe

0 2 4 6 810121416182022 24262830

Gradient Steps

24

Threat Model Overfitting

“panda” “gibbon”
57.7% confidence 09.3% confidence

25

L1 perturbations

26

Elastic perturbations

27

Evaluating Against Many Adversaries

Defense Robustness Under Different Attacks

None 22 0 31
@ Lo 15 14 49
k3
2 L
B oL
‘@
~ JPEG
=
~ Elastic
g
E_J Fog
>
< Snow
Gabor

Adversarial Attack

28

Evaluating Against Many Adversaries

Clean Accuracy L.. Lo | Ly Elasic JPEG Fog Snow Gabor | mUAR
squeczeNet a1 32 11.2 149 259 1LY 2.1 98 4.4 12.8
ResMNeXt-101 (32 = 8d) 959 25 A5 | M7 265 1.8 4.1 124 5.3 13.4
ResNeXt-101 (32 = 8d) + WSL 7.1 A0 A7 | 283 294 1. 26,2 203 8.0 190}
ResMNet-18 9l.6 27 82 1135 226 1.8 I T 4.2 12.0
FesMNet-5) 942 27 66 | 2] 249 1.5 Ia.8 1149 4.9 13.2
ResNet-30 + Styhzed ImageNet Q4.6 29 G4 12285 260 1.5 6.2 125 | 14.6
ResMNet-3) + Patch Gaussian 936 45 109|274 282 1.8 239 105 5.2 16.2
ResNet-50 + Aughhix 951 6.1 134|343 388 1.8 28.6 247 11.1 23.2

Visualizing Robust Networks (Lucid)

The Building Blocks of Interpretability

Interpretability techniques are normally studied in isolation.
We explore the powerful interfaces that arise when you combine them —
and the rich structure of this combinatorial space.

CHOOSE AN INPUT IMAGE ﬂ

For instance, by combining feature visualization (what
is @ neuron looking for?) with attribution (how does it
affect the output?), we can explore how the network
decides between labels like Labrador retriever and
tiger cat.

Several floppy ear
detectors seem to be

important when
distinguishing doags,
whereas pointy ears are
used to classify "tiger cat”.

CHANNELS THAT MOST
SUPPORT ... LABRADOR RETRIEVER v | < 5

feature visualization of

ST A

TIGER CAT v

30

Visualizing Robust Networks (Lucid)

build 'passing | coverage [82% J python 2.7 | 3.6 | pypi (WOIS.8

Lucid is a collection of infrastructure and tools for research in neural network interpretability.

« |5 Notebooks -- Get started without any setup!

« Wl Reading -- Learn more about visualizing neural nets.

« = Community -- Want to get involved? Please reach out!

« ./ Additional Information -- Licensing, code style, etc.

« 4 Start Doing Research! -- Want to get involved? We're trying to research openly!

Notebooks

Start visualizing neural networks with no setup. The following notebooks run right from your browser, thanks to
Colaboratory. It's a Jupyter notebook environment that requires no setup to use and runs entirely in the cloud.

You can run the notebooks on your local machine, too. Clone the repository and find them in the notebooks subfolder. You
will need to run a local instance of the Jupyter notebook environment to execute them.

Tutorial Notebooks

Lucid Tutorial colab

Quickly get started using Lucid. Become familiar with
changing objectives, transformations, and
paramaterization.

Modelzoo Introduction colab]

30

Visualizing Robust Networks

Visualization: find images that maximally excite different neurons.

Normal

31

Visualizing Robust Networks

Visualization: find images that maximally excite different neurons.

Normal Robust

31

Visualizing Robust Networks

Visualization: find images that maximally excite different neurons.

Normal Robust

31

Regular network (zoomed in

layer 84

layer 84

layer 88

layer 89
HL a

Robust network

zoomed In

33

