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Part I: OOD Robustness

1



Motivation

Folklore: ML does poorly OOD

Why and when? Can we predict it?
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Motivation

Folklore: ML does poorly OOD

Why and when? Can we predict it?

Model works Model does poorly

Geirhos et al., 2018; Ford et al., 2019
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How brittle are ML models?

Are we overfitting to IID accuracy?
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How brittle are ML models?

Are we overfitting to IID accuracy?

Measurement: plot IID vs. OOD accuracy

ImageNet-C

Hendrycks and Dietterich (2019)

ImageNet-v2

Recht et al. (2019)
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How brittle are ML models?

Are we overfitting to IID accuracy?

Measurement: plot IID vs. OOD accuracy

ImageNet-C

Hendrycks and Dietterich (2019)

ImageNet-v2

Recht et al. (2019)

Measurement completely changed the conversation

• From “Is IID useful at all?” to “Is anything else useful?”
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What else helps robustness?

On ImageNet-C, some things seem to help:

• Larger models, data augmentation, self-attention, pre-training
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What else helps robustness?

On ImageNet-C, some things seem to help:

• Larger models, data augmentation, self-attention, pre-training

Larger Self-Attention Data Aug Pre-training

Model

Orig.

IN-C

Trend

ResNet-50

76.1

41.6

ResNet-152

78.3

47.8 (+6.2)

+4.7

SE ResNet-152

78.7

50.9 (+9.3)

+5.5

SIN-trained

74.6

47.9 (+6.3)

-3.2

AugMix

77.6

48.3 (+6.7)

+3.2

WSL

85.4

65.5 (+23.9)

+19.7
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What else helps robustness?

On ImageNet-C, some things seem to help:

• Larger models, data augmentation, self-attention, pre-training

Larger Self-Attention Data Aug Pre-training

Model

Orig.

IN-C

Trend

ResNet-50

76.1

41.6

ResNet-152

78.3

47.8 (+6.2)

+4.7

SE ResNet-152

78.7

50.9 (+9.3)

+5.5

SIN-trained

74.6

47.9 (+6.3)

-3.2

AugMix

77.6

48.3 (+6.7)

+3.2

WSL

85.4

65.5 (+23.9)

+19.7

Do these really help? Many types of shift...
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The Sieve of Variability

Original ImageNet-C ImageNet-A

ImageNet-v2 ImageNet-R

Hendrycks and Dietterich, 2019; Hendrycks et al., 2019, 2020; Recht et al., 2019
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Applying the Sieve

Hypotheses: larger models, data aug, self-attn, pre-training
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Applying the Sieve

Hypotheses: larger models, data aug, self-attn, pre-training

Do they hold up on other datasets?

• ImageNet-A: yes

• ImageNet-v2: unclear

• ImageNet-R: yes, except self-attention
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Applying the Sieve

Hypotheses: larger models, data aug, self-attn, pre-training

Do they hold up on other datasets?

• ImageNet-A: yes

• ImageNet-v2: unclear

• ImageNet-R: yes, except self-attention

Larger Self-Attention Data Aug Pre-training

Model

Orig.

IN-C

IN-R

ResNet-50

76.1

41.6

36.1

ResNet-152

78.3

47.8

41.3

SE ResNet-152

78.7

50.9

40.0

SIN-trained

74.6

47.9

41.5

AugMix

77.6

48.3

41.1

WSL

85.4

65.5

75.8

“The Many Faces of Robustness”

Hendrycks et al. (2020)
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Revisiting Pre-training

Two distributions:

• WSL: 1B instagram images (1000x data)

• ImageNet-21K: additional ImageNet classes (10x data)

“The Many Faces of Robustness”

Hendrycks et al. (2020)
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Revisiting Pre-training

Two distributions:

• WSL: 1B instagram images (1000x data)

• ImageNet-21K: additional ImageNet classes (10x data)

Model

IN-R

IN-A

ResNet-50

36.1

2.2

WSL

75.8

45.4

IN-21k

37.2

11.4

May be about overlap rather than amount of data

“The Many Faces of Robustness”

Hendrycks et al. (2020)
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Tightening the Sieve

• DFR: size, occlusion, viewpoint, zoom

• SVSF: hardware, year, location

“The Many Faces of Robustness”

Hendrycks et al. (2020)
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Tightening the Sieve

Similar results for SVSF (but smaller gap)

“The Many Faces of Robustness”

Hendrycks et al. (2020)
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Does anything help?

Previous shifts had style component (also harder)

Data augmentation highly successful on these, but not for geography,
year, etc.
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Does anything help?

Previous shifts had style component (also harder)

Data augmentation highly successful on these, but not for geography,
year, etc.

Robustness is multivariate:

• Correlated, but multiple directions of variaton

• Need more datasets measuring new shifts

• Need new methods
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Data Augmentation
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Data Augmentation
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Part II: Adversarial Robustness
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ML: Powerful But Fragile

ML is state-of-the-art in many domains, such as vision:

2010 2011 2012 2013 2014 2015 2016

Year
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Neural Network
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ML: Powerful But Fragile

ML is state-of-the-art in many domains, such as vision:
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Adversary

0% accuracy
against attacker
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Machine Learning is Insecure

[Szegedy et al. ’14]
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Machine Learning is Insecure

[Szegedy et al. ’14]

Self-driving cars:

stop → yield

[Evtimov et al. ’17]

Speech recognition:

noise → “Ok Google”

[Carlini et al. ’16]

Malware:

malware → benign

[Grosse et al. ’16]
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Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. ’14]
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Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. ’14]

adversarial training
[Goodfellow et al. ’15]

defensive distillation
[Papernot et al. ’15]
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Arms Races
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adversarial training
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iterative attacks
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[Papernot et al. ’17]
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Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. ’14]

adversarial training
[Goodfellow et al. ’15]

defensive distillation
[Papernot et al. ’15]

iterative attacks
[Carlini & Wagner ’16]

transfer attacks
[Papernot et al. ’17]

· · · (100+ papers)
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Arms Races

Naive evaluation against attacks insufficient:

discovery
[Szegedy et al. ’14]

adversarial training
[Goodfellow et al. ’15]

defensive distillation
[Papernot et al. ’15]

iterative attacks
[Carlini & Wagner ’16]

transfer attacks
[Papernot et al. ’17]

· · · (100+ papers)

bypassing 10 defenses
[Carlini & Wagner ’17]
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Take-away

Relying on naive evaluation
leads to a security arms race
that defenders often lose!
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Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them
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Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

stop → yield
[Evtimov et al. ’17]

turtle → rifle
[Athalye et al. ’17]

banana → toaster
[Brown et al. ’17]
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Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

stop → yield
[Evtimov et al. ’17]

turtle → rifle
[Athalye et al. ’17]

banana → toaster
[Brown et al. ’17]

Most defenses fail within weeks (arms race), but a few have lasted.
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Adversarial Examples are Persistent

Persist despite hundreds of papers trying to avoid them

stop → yield
[Evtimov et al. ’17]

turtle → rifle
[Athalye et al. ’17]

banana → toaster
[Brown et al. ’17]

Most defenses fail within weeks (arms race), but a few have lasted.

What makes them different?
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Details of the robust model

Obtained via adversarial training (train on adversarial images)

Generate training images via gradient ascent on cross-entropy loss

If too few gradient steps, model learns to fool optimizer instead of
being truly robust
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Accuracy vs. gradient steps
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Threat Model Overfitting

`∞-norm
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L1 perturbations
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Elastic perturbations

27



Evaluating Against Many Adversaries
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Evaluating Against Many Adversaries
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Visualizing Robust Networks (Lucid)
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Visualizing Robust Networks (Lucid)
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Visualizing Robust Networks

Visualization: find images that maximally excite different neurons.

Normal

2

17

32

47

62

77
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Visualizing Robust Networks

Visualization: find images that maximally excite different neurons.

Normal Robust

2

17

32

47

62

77
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Visualizing Robust Networks

Visualization: find images that maximally excite different neurons.

Normal Robust

2

17

32

47

62

77

Other non-robust model:
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Regular network (zoomed in)
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Robust network (zoomed in)
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