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Neural Networks

Motivation

Recall linear regression / classification setup:

li (Imear)
L(B) = ,17.” —logo((— 1)y BTX(’) (logistic)

1
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Neural Networks

Motivation

Recall linear regression / classification setup:

,17 i (Imear)
L(B) = ,17 y —logo((— 1)y BTX(’) (logistic)
i=1

What if we want to learn more complex functions?
(E.g. true function not linear in x)
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Neural Networks

Motivation

Recall linear regression / classification setup:

n

%Z — BT o(x))? (linear)
y —loga((—1)" BT o(x")) (logistic)
=1

L(ﬁ)zj,_

What if we want to learn more complex functions?
(E.g. true function not linear in x)
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Neural Networks

Non-linear Examples

¢
6 . & ". Pt 0.00 3’ .
-0.25 b et -0325 H Q
: % L3 o.o$ Jﬁ :.l ()
-0.50 XK 050 o '
,S’ 2 o‘..-- c[ .
—07s g 'i"l"' -0.75 ' 80 th
-1.00 *T e -1.00
s o 05 0o 05 10 15 s o -05 0o 05 10 15

J. Steinhardt NNs and Pretraining April 13, 2021 4/21



Neural Networks

Non-linear Examples
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0(x) = xrxe d(x) = ¢+ 2 — 0.6]
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Neural Networks

Non-linear Examples
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9(x) = xixe, 9(x) = |x§ + x5 — 0.6
@ This gets tedious.
@ What if we can’t think of good features ahead of time?
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Neural Networks

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don’t need
to hand-engineer features.
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Neural Networks

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don’t need
to hand-engineer features.

Many approaches:
@ Random features
@ Neural networks
@ Kernels

@ Decision trees

J. Steinhardt NNs and Pretraining April 13, 2021 5/21



Neural Networks

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don’t need
to hand-engineer features.

Many approaches:
@ Random features
@ Neural networks
@ Kernels

@ Decision trees

Focus on first two for this lecture
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Neural Networks

Random features

Input x € RY, but can't think of good features function ¢ (x)
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Neural Networks

Random features

Input x € RY, but can't think of good features function ¢ (x)

Solution: make ¢ random but high-dimensional:
¢ (x) = sign(Mx + b), (1)

where M € R%*K and b € RX are random vectors (chosen once at beginning).
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Neural Networks

Random features

Input x € RY, but can't think of good features function ¢ (x)

Solution: make ¢ random but high-dimensional:
¢ (x) = sign(Mx + b), (1)

where M € R%*K and b € RX are random vectors (chosen once at beginning).

Other features work too, e.g. cos(Mx + b), etc. Key points are randomness
(good variation) and high dimensionality (usually k > d).

@ Will show later this is (approximately) equivalent to kernel regression!
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Neural Networks

Random features: Jupyter demo

[switch to notebook]
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Neural Networks

Learned features

@ Random features can be too crude
@ What if features themselves are learnable?
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Neural Networks

Learned features

@ Random features can be too crude
@ What if features themselves are learnable?

Two-layer neural network:

(P(X) = O'(M1X+b1),
p(y | x) = o(Moo(Mix + by) + b2).
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Neural Networks

Learned features

@ Random features can be too crude

@ What if features themselves are learnable?

Two-layer neural network:

(P(X) = O'(M1X+b1),
p(y | x) = o(Moo(Mix + by) + b2).

Modern ML: iterate to many layers (and use different non-linearity o,
convolutional structure, etc.)
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Neural Networks

Learned features: Jupyter demo

[switch to notebook]
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Neural Networks

Fitting a neural network model

How do we actually fit M and b?

Recall stochastic gradient descent: update parameters w = (M;, Mo, by, by) by
following gradient of the loss VL(w):
w < w—nVL(w)

How do we compute VL(w)?
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Neural Networks

Computing the gradient

[on board]
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Neural Networks

Backpropagation and autodiffentiation

@ Given any “computation graph”, we can write down derivatives recursively
using the chain rule

@ Then solve using dynamic programming!

@ This is called backpropagation or autodifferentiation, key idea in Pytorch
and other libraries

J. Steinhardt NNs and Pretraining April 13, 2021 12/21



Neural Networks

Backprop in pytorch

[Jupyter demo]
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Pre-training
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Pre-training

Motivation

@ Suppose we want to train a classifier to predict the political slant of news

@ Common situation:

o Lots of unlabeled data (all text on internet)
o Few labeled data (hand-label 1000 random articles)
o New instances might be OOD (news changes over time)

@ How do we handle all the unlabeled data?

o First pretrain on very large amount of (possibly unlabeled) data
e Then finetune on smaller amount of labeled, task-specific data
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Pre-training

Pre-training: Examples

@ Images: pretrain to predict Instagram tags (3.5B images), fine-tune on
ImageNet (1M images)

@ Images: pretrain on ImageNet (1M images), fine-tune on CIFAR-10 (50K
images)

@ Text: pretrain on Wikipedia (2.5B words) + BookCorpus (0.8B words),
fine-tune on [sentiment classification, entailment, etc.]

Largest language models pretrained on over 400B tokens!
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Pre-training

Pre-training: Details

[on board]

J. Steinhardt NNs and Pretraining April 13, 2021 17/21



Pre-training

Accuracy and Robustness
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Pre-training

Zero-shot Learning

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT:3)

Zero-shot Fine-tuning

The model predicts the answer given only a natural language

‘The model i trained via repeated gradient updates using a
description of the task. No gradient updat P

f example tasks.

Transla

nglish to French: asi

otter => loutre de mer example #

One-shot mint => menthe poivrée example #2
In addition to the task description, the model sees a single:
example of the task. No gradient updates are performed.

Translate English to French task description

sea otter => loutre de mer example

P plush giraffe = girafe peluche sampl

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French

ses otter => loutre de mer

peppermint => menthe poivrée

plush girafe => girafe peluche
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Pre-training

Few-shot Accuracy (I)
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Pre-training

Few-shot Accuracy (ll)

GPT-3 Zero-Shot Calibration
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Figure 8: GPT-3's confidence is a poor estimator
of its accuracy and can be off by up to 24%.
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