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Neural Networks

Motivation

Recall linear regression / classification setup:

L(β ) =
1
n

n

∑
i=1

(y(i)−β
>x(i))2 (linear)

L(β ) =
1
n

n

∑
i=1
− logσ((−1)y(i)

β
>x(i)) (logistic)

What if we want to learn more complex functions?
(E.g. true function not linear in x)
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Neural Networks

Motivation

Recall linear regression / classification setup:

L(β ) =
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n
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∑
i=1

(y(i)−β
>

φ(x(i)))2 (linear)

L(β ) =
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n

n

∑
i=1
− logσ((−1)y(i)

β
>

φ(x(i))) (logistic)
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Neural Networks

Non-linear Examples

φ(x) = x1x2, φ(x) = |x2
1 + x2

2 −0.6|

This gets tedious.

What if we can’t think of good features ahead of time?
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Neural Networks

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don’t need
to hand-engineer features.

Many approaches:

Random features

Neural networks

Kernels

Decision trees

Focus on first two for this lecture
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Neural Networks

Random features

Input x ∈ Rd , but can’t think of good features function φ(x)

Solution: make φ random but high-dimensional:

φ(x) = sign(Mx +b), (1)

where M ∈ Rd×k and b ∈ Rk are random vectors (chosen once at beginning).

Other features work too, e.g. cos(Mx +b), etc. Key points are randomness
(good variation) and high dimensionality (usually k > d).

Will show later this is (approximately) equivalent to kernel regression!
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Neural Networks

Random features: Jupyter demo

[switch to notebook]
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Neural Networks

Learned features

Random features can be too crude

What if features themselves are learnable?

Two-layer neural network:

φ(x) = σ(M1x +b1),

p(y | x) = σ(M2σ(M1x +b1)+b2).

Modern ML: iterate to many layers (and use different non-linearity σ ,
convolutional structure, etc.)
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Neural Networks

Learned features: Jupyter demo

[switch to notebook]

J. Steinhardt NNs and Pretraining April 13, 2021 9 / 21



Neural Networks

Fitting a neural network model

How do we actually fit M and b?

Recall stochastic gradient descent: update parameters w = (M1,M2,b1,b2) by
following gradient of the loss ∇L(w):

w ′← w−η∇L(w)

How do we compute ∇L(w)?
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Neural Networks

Computing the gradient

[on board]
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Neural Networks

Backpropagation and autodiffentiation

Given any “computation graph”, we can write down derivatives recursively
using the chain rule

Then solve using dynamic programming!

This is called backpropagation or autodifferentiation, key idea in Pytorch
and other libraries
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Neural Networks

Backprop in pytorch

[Jupyter demo]
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Pre-training

Pre-training
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Pre-training

Motivation

Suppose we want to train a classifier to predict the political slant of news

Common situation:
Lots of unlabeled data (all text on internet)
Few labeled data (hand-label 1000 random articles)
New instances might be OOD (news changes over time)

How do we handle all the unlabeled data?
First pretrain on very large amount of (possibly unlabeled) data
Then finetune on smaller amount of labeled, task-specific data
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Pre-training

Pre-training: Examples

Images: pretrain to predict Instagram tags (3.5B images), fine-tune on
ImageNet (1M images)

Images: pretrain on ImageNet (1M images), fine-tune on CIFAR-10 (50K
images)

Text: pretrain on Wikipedia (2.5B words) + BookCorpus (0.8B words),
fine-tune on [sentiment classification, entailment, etc.]

Largest language models pretrained on over 400B tokens!
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Pre-training

Pre-training: Details

[on board]
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Pre-training

Accuracy and Robustness
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Pre-training

Zero-shot Learning
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Pre-training

Few-shot Accuracy (I)
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Pre-training

Few-shot Accuracy (II)
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