Lecture 23: Neural Networks and Pretraining

Jacob Steinhardt

April 13, 2021

J. Steinhardt

Neural Networks

Recall linear regression / classification setup:

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \beta^{\top} x^{(i)})^2 \text{ (linear)}$$
$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} -\log \sigma((-1)^{y^{(i)}} \beta^{\top} x^{(i)}) \text{ (logistic)}$$

Recall linear regression / classification setup:

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \beta^{\top} x^{(i)})^2 \text{ (linear)}$$
$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} -\log \sigma((-1)^{y^{(i)}} \beta^{\top} x^{(i)}) \text{ (logistic)}$$

What if we want to learn more complex functions? (E.g. true function not linear in x)

Recall linear regression / classification setup:

$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \beta^{\top} \phi(x^{(i)}))^2 \text{ (linear)}$$
$$L(\beta) = \frac{1}{n} \sum_{i=1}^{n} -\log \sigma((-1)^{y^{(i)}} \beta^{\top} \phi(x^{(i)})) \text{ (logistic)}$$

What if we want to learn more complex functions? (E.g. true function not linear in x)

Non-linear Examples

Non-linear Examples

 $\phi(x) = x_1 x_2, \ \phi(x) = |x_1^2 + x_2^2 - 0.6|$

Non-linear Examples

 $\phi(x) = x_1 x_2, \ \phi(x) = |x_1^2 + x_2^2 - 0.6|$

- This gets tedious.
- What if we can't think of good features ahead of time?

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don't need to hand-engineer features.

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don't need to hand-engineer features.

Many approaches:

- Random features
- Neural networks
- Kernels
- Decision trees

Non-parametric modeling

Non-parametric modeling: define flexible function classes so we don't need to hand-engineer features.

Many approaches:

- Random features
- Neural networks
- Kernels
- Decision trees

Focus on first two for this lecture

Random features

Input $x \in \mathbb{R}^d$, but can't think of good features function $\phi(x)$

Random features

Input $x \in \mathbb{R}^d$, but can't think of good features function $\phi(x)$

Solution: make ϕ random but high-dimensional:

$$\phi(x) = \operatorname{sign}(Mx + b), \tag{1}$$

where $M \in \mathbb{R}^{d \times k}$ and $b \in \mathbb{R}^{k}$ are random vectors (chosen once at beginning).

Random features

Input $x \in \mathbb{R}^d$, but can't think of good features function $\phi(x)$

Solution: make ϕ random but high-dimensional:

$$\phi(x) = \operatorname{sign}(Mx + b), \tag{1}$$

where $M \in \mathbb{R}^{d \times k}$ and $b \in \mathbb{R}^{k}$ are random vectors (chosen once at beginning).

Other features work too, e.g. cos(Mx + b), etc. Key points are randomness (good variation) and high dimensionality (usually k > d).

• Will show later this is (approximately) equivalent to kernel regression!

Neural Networks

Random features: Jupyter demo

[switch to notebook]

Learned features

- Random features can be too crude
- What if features themselves are learnable?

Learned features

- Random features can be too crude
- What if features themselves are learnable?

Two-layer neural network:

$$\phi(x) = \sigma(M_1x + b_1),$$

$$\rho(y \mid x) = \sigma(M_2\sigma(M_1x + b_1) + b_2).$$

Learned features

- Random features can be too crude
- What if features themselves are learnable?

Two-layer neural network:

$$\phi(x) = \sigma(M_1x + b_1),$$

$$\rho(y \mid x) = \sigma(M_2\sigma(M_1x + b_1) + b_2).$$

Modern ML: iterate to many layers (and use different non-linearity σ , convolutional structure, etc.)

Learned features: Jupyter demo

[switch to notebook]

Fitting a neural network model

How do we actually fit *M* and *b*?

Recall stochastic gradient descent: update parameters $w = (M_1, M_2, b_1, b_2)$ by following gradient of the loss $\nabla L(w)$:

$$w' \leftarrow w - \eta
abla L(w)$$

How do we compute $\nabla L(w)$?

Neural Networks

Computing the gradient

[on board]

Backpropagation and autodiffentiation

- Given any "computation graph", we can write down derivatives recursively using the chain rule
- Then solve using dynamic programming!
- This is called backpropagation or autodifferentiation, key idea in Pytorch and other libraries

Backprop in pytorch

[Jupyter demo]

Pre-training

- Suppose we want to train a classifier to predict the political slant of news
- Common situation:
 - Lots of unlabeled data (all text on internet)
 - Few labeled data (hand-label 1000 random articles)
 - New instances might be OOD (news changes over time)
- How do we handle all the unlabeled data?
 - First pretrain on very large amount of (possibly unlabeled) data
 - Then finetune on smaller amount of labeled, task-specific data

Pre-training: Examples

- Images: pretrain to predict Instagram tags (3.5B images), fine-tune on ImageNet (1M images)
- Images: pretrain on ImageNet (1M images), fine-tune on CIFAR-10 (50K images)
- Text: pretrain on Wikipedia (2.5B words) + BookCorpus (0.8B words), fine-tune on [sentiment classification, entailment, etc.]

Largest language models pretrained on over 400B tokens!

Pre-training: Details

[on board]

Accuracy and Robustness

Zero-shot Learning

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:	task description
cheese =>	- prompt

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

	Translate English to French:	task description
	sea otter => loutre de mer	example
	cheese =>	- prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

	Translate English to French:	- task description
	sea otter => loutre de mer	examples
	peppermint => menthe poivrée	
	${\tt plush girafe \Rightarrow girafe peluche}$	
	cheese =>	prompt

Few-shot Accuracy (I)

Few-shot Accuracy (II)

