Lecture 16: The Bootstrap

Jacob Steinhardt

March 11, 2021

Recap

- Overdispersion
- Parametric confidence intervals \Longrightarrow overly narrow uncertainty
- Last time: can fix with negative binomial model
- Are there more model-agnostic ways to fix this?
- Yes! (Sort of)
- The bootstrap: a nonparametric method for generating confidence intervals
- Can work even if CLT doesn't hold
- But can sometimes fail, and need β to at least be meaningful

Recap of frequentist inference

Data $X_{1}, \ldots, X_{n} \sim p$, parameter $\theta(p)$
Confidence interval at level $\alpha: I\left(X_{1}, \ldots, X_{n}\right)$ (interval on real line) such that

$$
\mathbb{P}\left[\theta(p) \in I\left(X_{1: n}\right)\right] \geq 1-\alpha
$$

More generally: confidence region satisfies $\theta(p) \in R\left(X_{1: n}\right)$ w.p. $1-\alpha$.
Note probability is over random draw of $X_{1}, \ldots, X_{n}($ for fixed $p)$.

Wald confidence ellipsoids for GLMs

Last time looked at statsmodels package, which uses the Wald ellipsoid:

$$
R_{\alpha}\left(X_{1: n}\right)=\left\{z \mid\left(z-\hat{\beta}_{n}\right)^{T} \mathrm{I}_{n}\left(z-\hat{\beta}_{n}\right) \leq F^{-1}(\alpha)\right\}
$$

where $\hat{\beta}_{n}=\operatorname{argmin}_{\beta} L_{n}(\beta)$ is the maximum likelihood estimate, and $\mathrm{I}_{n}=\nabla^{2} L_{n}\left(\hat{\beta}_{n}\right)$ is the Fisher information.

Asymptotic normality implies that F is the cdf of the χ^{2} distribution.

The above form is specific to maximum likelihood estimators, but similar confidence ellipsoids exist for any M-estimator.

Escaping model mis-specification

Saw last time that Wald confidence interval can be wrong if model is wrong

We'll escape this with a non-parametric tool for producing frequentist Cls

Non-parametric \Longrightarrow doesn't rely on model \Longrightarrow more robust

Key tool: the bootstrap

The Bootstrap

Idea for computing confidence intervals by resampling the data

Without bootstrap:

- Often rely on model assumptions
- Wald test, chi-square test, student-t test, ...
- Lots of algebra, need different formula for each setting

With bootstrap:

- Fewer assumptions
- Single unified approach
- Computer simulation

Bootstrap: formal setting

Data: $X^{(1)}, \ldots, X^{(n)} \sim p$

Estimator: $\hat{\theta}=\hat{\theta}\left(X^{(1)}, \ldots, X^{(n)}\right)$

- θ^{*} : population parameter (that $\hat{\theta}$ converges to as $n \rightarrow \infty$)

Question: How close is θ^{*} to $\hat{\theta}$?

- Typically framed as computing distribution of $\frac{1}{\sqrt{n}}\left(\hat{\theta}-\theta^{*}\right)$

The ideal hypothetical: re-sampling

Population distribution p^{*}

- $X^{(1)}, \ldots, X^{(n)} \sim p^{*}$

The ideal hypothetical: re-sampling

Population distribution p^{*}

- $X^{(1)}, \ldots, X^{(n)} \sim p^{*}$

Noise in $\hat{\theta}$ due to randomness in $X^{(1)}, \ldots, X^{(n)}$

The ideal hypothetical: re-sampling

Population distribution p^{*}

- $X^{(1)}, \ldots, X^{(n)} \sim p^{*}$

Noise in $\hat{\theta}$ due to randomness in $X^{(1)}, \ldots, X^{(n)}$
Imagine hypothetically sampling fresh data:

$$
\begin{aligned}
X^{(1)}, \ldots, X^{(n)} & \rightarrow \hat{\theta} \text { (Original sample) } \\
X^{(1) \prime}, \ldots, X^{(n) \prime} & \rightarrow \hat{\theta}^{\prime} \text { (Re-sample) } \\
X^{(1) \prime \prime}, \ldots, X^{(n) \prime \prime} & \rightarrow \hat{\theta}^{\prime \prime} \\
X^{(1) \prime \prime \prime}, \ldots, X^{(n) \prime \prime \prime} & \rightarrow \hat{\theta}^{\prime \prime \prime}
\end{aligned}
$$

The ideal hypothetical: re-sampling

Population distribution p^{*}

- $X^{(1)}, \ldots, X^{(n)} \sim p^{*}$

Noise in $\hat{\theta}$ due to randomness in $X^{(1)}, \ldots, X^{(n)}$
Imagine hypothetically sampling fresh data:

$$
\begin{aligned}
X^{(1)}, \ldots, X^{(n)} & \rightarrow \hat{\theta} \text { (Original sample) } \\
X^{(1) \prime}, \ldots, X^{(n) \prime} & \rightarrow \hat{\theta}^{\prime} \text { (Re-sample) } \\
X^{(1) \prime \prime}, \ldots, X^{(n) \prime \prime} & \rightarrow \hat{\theta}^{\prime \prime} \\
X^{(1) \prime \prime \prime}, \ldots, X^{(n) \prime \prime \prime} & \rightarrow \hat{\theta}^{\prime \prime \prime}
\end{aligned}
$$

Implicit commitment: distribution of $\hat{\theta}$ roughly centered on θ^{*} (low bias)

Counterexample

$\hat{\boldsymbol{\theta}}\left(x_{1}, \ldots, x_{n}\right)=\max _{i=1}^{n} x_{i}$
n samples: always finite
∞ samples: infinite

The Boostrap

Want to approximate hypothetical samples $\hat{\theta}^{\prime}, \hat{\theta}^{\prime \prime}, \ldots$

But only have actual data $x^{(1)}, \ldots, x^{(n)} \rightarrow \hat{\boldsymbol{\theta}}$

Idea: subsample data

- With replacement
- n points in each sample

Useful framing: approximate n samples from p by n samples from \hat{p}_{n}

Bootstrap: Pseudocode

B : number of bootstrap samples

For $b=1, \ldots, B$:

- Sample $x^{(1) \prime}, \ldots, x^{(n) \prime}$ with replacement from $x^{(1)}, \ldots, x^{(n)}$
- Let $\hat{\theta}^{(b)}=\hat{\theta}\left(x^{(1) \prime}, \ldots, x^{(n) \prime}\right)$

Output $\left\{\hat{\boldsymbol{\theta}}^{(1)}, \ldots, \hat{\boldsymbol{\theta}}^{(B)}\right\}$

Bootstrap in python

[Jupyter demos]

When does the bootstrap work?

Most parametric estimators are fine

- I.e. fixed number of parameters d and $d \ll n$

When does the bootstrap work?

Most parametric estimators are fine

- l.e. fixed number of parameters d and $d \ll n$

NOT parametric:

- Decision trees
- Neural nets
- Kernel regression

These "interpolate" data, sampling with replacement \approx subsampling

When does the bootstrap work?

Most parametric estimators are fine

- l.e. fixed number of parameters d and $d \ll n$

NOT parametric:

- Decision trees
- Neural nets
- Kernel regression

These "interpolate" data, sampling with replacement \approx subsampling

Other commitments:

- $\hat{\theta}$ approximately unbiased
- θ^{*} is a meaningful quantity

More examples

Bootstrap works for:

- Median and other quantiles
- Cumulative distribution function
- Trimmed mean
- Most U-statistics

Doesn't work for:

- De-generate U-statistics, e.g.: $U\left(X_{1: n}\right)=\frac{1}{\binom{n}{2}} \sum_{i<j} \mathbb{I}\left[X_{i}=X_{j}\right] e^{1 / X_{i}}$
- Estimating θ for $X \sim$ Uniform $([0, \theta])$.

Bootstrap: Underlying Theory

We seek to approximate the distribution of some quantity $R_{n}\left(X_{1}, \ldots, X_{n} ; p\right)$ for $X_{1: n} \sim p$

Let $\mathscr{L}(p)$ denote the limiting distribution as $n \rightarrow \infty$

For instance, $R\left(X_{1: n}, p\right)=\frac{\hat{\mu}_{n}-\mu(p)}{\sqrt{n} \sigma(p)}$, and $\mathscr{L}(p)=N(0,1)$

Bootstrap replaces $R_{n}\left(X_{1: n}, p\right)$ with $R_{n}\left(X_{1: n}^{\prime}, \hat{p}_{n}\right)$

- Intuitively this replaces $\mathscr{L}(p)$ with $\mathscr{L}\left(\hat{p}_{n}\right)$

Bootstrap: Underlying Theory

Bootstrap replaces $R_{n}\left(X_{1: n}, p\right)$ with $R_{n}\left(X_{1: n}^{\prime}, \hat{p}_{n}\right)$

- Intuitively this replaces $\mathscr{L}(p)$ with $\mathscr{L}\left(\hat{p}_{n}\right)$

Issue is there are two limits happening at once. To make this work need:

- $R_{n}(q) \rightarrow \mathscr{L}(q)$ uniformly for q in a neighborhood of p
- The mapping $p \mapsto \mathscr{L}(p)$ is continuous

Proof sketch: uniform convergence means that for large $n, R_{n}\left(\hat{p}_{n}\right)$ will be very close in law to $\mathscr{L}\left(\hat{p}_{n}\right)$ (need uniformity since \hat{p}_{n} is changing). Then $\mathscr{L}\left(\hat{p}_{n}\right) \rightarrow \mathscr{L}(p)$ since $\hat{p}_{n} \rightarrow p$ and \mathscr{L} is continuous.

See Bickel and Freedman 1981, Some Asymptotic Theory for the Bootstrap.

Counterexamples Revisited

Nonparametric models (i.e. neural nets) fail because \mathscr{L} is not continuous

Other estimators can fail due to lack of uniformity.

- E.g. $X \sim U([0, \theta])$, take $R_{n}=\frac{\theta-X^{\max }}{n \theta}$. [Here $X^{\text {max }}$ is the max of the X_{i}]
- R_{n} converges to exponential distribution, but bootstrap samples have $X^{\max }=X^{\prime \text { max }}$ with probability $1-e^{-1}$.

Some models with growing dimension are actually fine. E.g. can have dimension $n^{1-\delta}$ in regression models and still have bootstrap work. See Mammen 1992, Bootstrap, wild bootstrap, and asymptotic normality.

