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Overview

So far, looked at issues at training time: what happens if data is corrupted.

Now will switch focus: to statistical inferences (e.g. uncertainty estimates or
causal estimates).

In particular, how are things inferences affected by model
mis-specification?

This lecture: generalized linear models (GLMs)

Introduce and review classical uncertainty estimates

Show these can go very wrong (COVID-19 case study)

Discuss how to fix
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Review: Classification and Regression

Observe data (x(1),y(1)), . . . ,(x(n),y(n)), where x(i) ∈ Rd and y(i) ∈ R
or y(i) ∈ {0,1}, N, etc.

Minimize loss function L(β ) = 1
n ∑

n
i=1 `(x

(i),y(i);β )

Example:

`(x,y;β ) = (y−β>x)2 (least squares regression)

`(x,y;β ) = log(1+ exp((−1)yβ>x)) (logistic regression)

Other examples? What about count data?
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Generalized Linear Models

Observe data (x(1),y(1)), . . . ,(x(n),y(n))

Model y | x,β has two parts:

Prediction of mean via link function: E[y | x] = g(β>x)
Exponential family F(y | µ) with mean µ :

y∼ N(µ,1) (regression)
y∼ Bernoulli(µ) (classification)
y∼ Poisson(µ) (count data)

Link function g can be arbitrary but often canonical:

F = N(µ,1), g(z) = z

F = Bernoulli(µ), g(z) = 1
1+exp(−z)

F = Poisson(µ), g(z) = exp(z)
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Example: Poisson

Poisson likelihood, exponential link:

p(y | x,β ) = Poisson(y; exp(β>x))

= exp(−exp(β>x))exp(β>x)y/y!

∝ exp(yβ
>x− exp(β>x))

Log-likelihood (up to constants):

L(y | x,β ) =
n

∑
i=1

y(i)β>x(i)− exp(β>x(i)).

MLE (∇L = 0): predicted expectation equals empirical expectation:

n

∑
i=1

x(i)y(i) =
n

∑
i=1

x(i) exp(β>x(i))
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Linear regression on COVID-19 data

Count data: y(t) is number of COVID-19 cases on day t.

Assuming exponential growth, E[y(t)] = exp(β0 +β1t) (Poisson with
exponential link function)

Can implement using statsmodels package.

[Jupyter demo]
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What Went Wrong?

Recall form of log-likelihood:

L(y | x,β ) =
n

∑
i=1

y(i)β>x(i)− exp(β>x(i))

∇L(y | x,β ) =
n

∑
i=1

y(i)x(i)− exp(β>x(i))x(i)

∇
2L(y | x,β ) =−

n

∑
i=1

exp(β>x(i))(x(i)x(i))>

Confidence intervals based on Fisher information: I(β ) =−∇2L

I(β ) =
T

∑
t=1

exp(β0 +β1t)
[

1 t
t t2

]
Large whenever counts are large, independent of variation!
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Misspecification Issues

Peril of assumptions: at the mercy of your model; Var(Poisson(µ)) = µ

Poisson distribution too narrow, leads to overconfident posterior

Common issue (esp. with count data): overdispersion

Typical fix: negative binomial distribution

pµ,α(k) ∝

(
k+α−1

k

)( µ

µ +α

)k

Mean µ , overdispersion α (variance µ · (1+µ/α))
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Negative binomial plots

[Credit: PyMC3 docs]
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Negative binomial regression on COVID-19 data

Instead of F(µ) = Poisson(µ), use Fα(µ) = NegativeBinomial(µ,α)

Standard ways of fitting α , i.e. MLE (or just set to a constant, but confidence
intervals scale with α)

[Jupyter demo]

Medium post: https://medium.com/@jsteinhardt/
the-growth-rate-of-covid-19-74944fc1d0f6
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Discussion: modeling assumptions

What other modeling assumptions might be violated for the COVID-19 data?

J. Steinhardt GLMs March 9, 2021 11 / 11


