Lecture 15: Model Mis-specification in Generalized Linear Models

Jacob Steinhardt

March 9, 2021

So far, looked at issues at training time: what happens if data is corrupted.

Now will switch focus: to statistical inferences (e.g. uncertainty estimates or causal estimates).

 In particular, how are things inferences affected by model mis-specification?

This lecture: generalized linear models (GLMs)

- Introduce and review classical uncertainty estimates
- Show these can go very wrong (COVID-19 case study)
- Discuss how to fix

Observe data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$, where $x^{(i)} \in \mathbb{R}^d$ and $y^{(i)} \in \mathbb{R}$ • or $y^{(i)} \in \{0, 1\}$, \mathbb{N} , etc.

Minimize loss function $L(\beta) = \frac{1}{n} \sum_{i=1}^{n} \ell(x^{(i)}, y^{(i)}; \beta)$

Example:

- $\ell(x, y; \beta) = (y \beta^{\top} x)^2$ (least squares regression)
- $\ell(x,y;\beta) = \log(1 + \exp((-1)^{y}\beta^{\top}x))$ (logistic regression)
- Other examples? What about count data?

Generalized Linear Models

Observe data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$

Model $y \mid x, \beta$ has two parts:

- Prediction of mean via *link function*: $\mathbb{E}[y \mid x] = g(\beta^{\top}x)$
- Exponential family $F(y \mid \mu)$ with mean μ :
 - $y \sim N(\mu, 1)$ (regression)
 - $y \sim \text{Bernoulli}(\mu)$ (classification)
 - *y* ~ Poisson(μ) (count data)

Generalized Linear Models

Observe data $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$

Model $y \mid x, \beta$ has two parts:

• Prediction of mean via *link function*: $\mathbb{E}[y \mid x] = g(\beta^{\top}x)$

- Exponential family $F(y \mid \mu)$ with mean μ :
 - $y \sim N(\mu, 1)$ (regression)
 - *y* ~ Bernoulli(μ) (classification)
 - *y* ~ Poisson(μ) (count data)

Link function g can be arbitrary but often canonical:

•
$$F = N(\mu, 1), g(z) = z$$

•
$$F = \text{Bernoulli}(\mu), g(z) = \frac{1}{1 + \exp(-z)}$$

•
$$F = \text{Poisson}(\mu), g(z) = \exp(z)$$

Example: Poisson

Poisson likelihood, exponential link:

$$p(y \mid x, \beta) = \text{Poisson}(y; \exp(\beta^{\top} x))$$
$$= \exp(-\exp(\beta^{\top} x)) \exp(\beta^{\top} x)^{y} / y!$$
$$\propto \exp(y\beta^{\top} x - \exp(\beta^{\top} x))$$

Log-likelihood (up to constants):

$$L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^{\top} x^{(i)} - \exp(\beta^{\top} x^{(i)}).$$

Example: Poisson

Poisson likelihood, exponential link:

$$p(y \mid x, \beta) = \text{Poisson}(y; \exp(\beta^{\top} x))$$
$$= \exp(-\exp(\beta^{\top} x)) \exp(\beta^{\top} x)^{y} / y!$$
$$\propto \exp(y\beta^{\top} x - \exp(\beta^{\top} x))$$

Log-likelihood (up to constants):

$$L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^{\top} x^{(i)} - \exp(\beta^{\top} x^{(i)}).$$

MLE ($\nabla L = 0$): predicted expectation equals empirical expectation:

$$\sum_{i=1}^{n} x^{(i)} y^{(i)} = \sum_{i=1}^{n} x^{(i)} \exp(\beta^{\top} x^{(i)})$$

Count data: $y^{(t)}$ is number of COVID-19 cases on day *t*.

Assuming exponential growth, $\mathbb{E}[y^{(t)}] = \exp(\beta_0 + \beta_1 t)$ (Poisson with exponential link function)

Can implement using statsmodels package.

[Jupyter demo]

Recall form of log-likelihood:

$$L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^{\top} x^{(i)} - \exp(\beta^{\top} x^{(i)})$$
$$\nabla L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} x^{(i)} - \exp(\beta^{\top} x^{(i)}) x^{(i)}$$
$$\nabla^{2} L(y \mid x, \beta) = -\sum_{i=1}^{n} \exp(\beta^{\top} x^{(i)}) (x^{(i)} x^{(i)})^{\top}$$

Recall form of log-likelihood:

$$L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} \beta^{\top} x^{(i)} - \exp(\beta^{\top} x^{(i)})$$
$$\nabla L(y \mid x, \beta) = \sum_{i=1}^{n} y^{(i)} x^{(i)} - \exp(\beta^{\top} x^{(i)}) x^{(i)}$$
$$\nabla^{2} L(y \mid x, \beta) = -\sum_{i=1}^{n} \exp(\beta^{\top} x^{(i)}) (x^{(i)} x^{(i)})^{\top}$$

Confidence intervals based on Fisher information: $I(\beta) = -\nabla^2 L$

$$I(\beta) = \sum_{t=1}^{T} \exp(\beta_0 + \beta_1 t) \begin{bmatrix} 1 & t \\ t & t^2 \end{bmatrix}$$

Large whenever counts are large, independent of variation!

Peril of assumptions: at the mercy of your model; $Var(Poisson(\mu)) = \mu$

Poisson distribution too narrow, leads to overconfident posterior

Common issue (esp. with count data): overdispersion

Peril of assumptions: at the mercy of your model; $Var(Poisson(\mu)) = \mu$

Poisson distribution too narrow, leads to overconfident posterior

Common issue (esp. with count data): overdispersion

Typical fix: negative binomial distribution

$$p_{\mu,\alpha}(k) \propto \binom{k+\alpha-1}{k} \left(\frac{\mu}{\mu+\alpha}\right)^k$$

Mean μ , overdispersion α (variance $\mu \cdot (1 + \mu/\alpha)$)

Negative binomial plots

[Credit: PyMC3 docs]

J. Steinhardt

Instead of $F(\mu) = \text{Poisson}(\mu)$, use $F_{\alpha}(\mu) = \text{NegativeBinomial}(\mu, \alpha)$

Standard ways of fitting α , i.e. MLE (or just set to a constant, but confidence intervals scale with α)

[Jupyter demo]

Medium post: https://medium.com/@jsteinhardt/ the-growth-rate-of-covid-19-74944fc1d0f6 What other modeling assumptions might be violated for the COVID-19 data?