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Motivation: Robust Learning

-Question

What concepts can be learned robustly,
even if some data is arbitrarily corrupted?




Example: Mean Estimation

-Problem

Given data z1,...,2, € R?, of which (1 — ¢)n come from p*
(and remaining en are arbitrary outliers), estimate mean p of p*.




Example: Mean Estimation

-Problem

Given data z1,...,2, € R?, of which (1 — ¢)n come from p*
(and remaining en are arbitrary outliers), estimate mean p of p*.

o ° ¢
o ®e
o0
®
o.“'o';o;
O '* .o..
oo ¢ A ¢
‘.... 0 ®
. :.. ..
‘ o 'O



Example: Mean Estimation

-Problem

Given data z1,...,2, € R?, of which (1 — ¢)n come from p*
(and remaining en are arbitrary outliers), estimate mean p of p*.

‘ .?. op® ® o ©
o :.. o o
¢ ‘ L 'O.



Example: Mean Estimation

-Problem

Given data z1,...,2, € R?, of which (1 — ¢)n come from p*
(and remaining en are arbitrary outliers), estimate mean p of p*.




Example: Mean Estimation

-Problem

Given data z1,...,2, € R?, of which (1 — ¢)n come from p*
(and remaining en are arbitrary outliers), estimate mean p of p*.

Issue: high dimensions




Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

Lg ™ N(le)
——

Gaussian mean u
variance 1 each coord.



Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

Lg ™ N(le)
——

Gaussian mean u
variance 1 each coord.

°
)
.‘. o %¢g
°® o o
o ® °
o o
o &2 @
S o



Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

Lg ™ N(le)
——

Gaussian mean u
variance 1 each coord.

A Sy




Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

Lg ™ N(le)
——

Gaussian mean u
variance 1 each coord.

lzi — pllz V12 + -+ 12 = Vd

Cannot filter independently
even if know true density!




History

Progress in high dimensions only recently:
e Tukey median [1975]: robust but NP-hard
e Donoho estimator [1982]: high error

e [DKKLMS16, LRV16]: first dimension-independent error bounds



History

Progress in high dimensions only recently:
e Tukey median [1975]: robust but NP-hard
e Donoho estimator [1982]: high error
e [DKKLMS16, LRV16]: first dimension-independent error bounds

e large body of work since then [CSV17, DKKLMS17, L17, DBS17]

e many other problems including PCA [XCM10], regression
INTN11], classification [FHKPQ9], etc.
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This Talk

-Question

What general and simple properties enable robust estimation?

New information-theoretic criterion: resilience.



Resilience

Suppose {z;}ics is a set of points in R,

-Definition (Resilience)

A set S is (o, ¢)-resilient in a norm || - || around a point p if
for all subsets T C S of size at least (1 — ¢€)|5],

1
Hm > (@i M)H < 0.
i€T

Intuition: all large subsets have similar mean.



Main Result

Let S C RY be a set of of (1 — €)n “good” points.

Let Sout be a set of en arbitrary outliers.

We observe S = S U Syt

-Theorem

If S'is (o, 1= )-resilient around 1, then it is possible to output

v such that || — p|| < 20.

In fact, outputting the center of any resilient subset of S will work!
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Pigeonhole Argument

Claim: If S and S5’ are (o, 7= )-resilient around u and 1" and have size
(1 — €)n, then ||u — 1| < 20.

Proof: S

N

g SNS

o Let ngng: be the mean of SN S’ .

e By Pigeonhole, |S NS’ > +=|5].

e Then |[i/ — pusns/|| < o by resilience.
p— psns || < o.

e Result follows by triangle inequality.

e Similarly, |
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If a dataset has bounded covariance, it is (e, O(+/€))-resilient
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Implication: Mean Estimation

-Lemma

If a dataset has bounded covariance, it is (e, O(+/€))-resilient
(in the /5-norm).

Proof: If en points > 1/4/€ from mean, would make variance > 1.

Therefore, deleting en points changes mean by at most ~ €¢-1/y/e = /.

-Corollary

If the clean data has bounded kth moments, its mean can be
estimated to /o-error O(e'~/*) in the presence of en outliers.




Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution 7 on {1,...,m}.

Samples come in r-tuples, which are either all good or all outliers.
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Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution 7 on {1,...,m}.

Samples come in r-tuples, which are either all good or all outliers.

-Corollary

The distribution 7 can be estimated (in TV distance) to error
O(e/log(1/€)/r) in the presence of en outliers.

e follows from resilience in /1-norm
e see also [Qiao & Valiant, 2018] later in this session!
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A Majority of Outliers

Can also handle the case where clean set has size only an (a < %)

/

~

S

SNS’

e cover S by resilient sets
e at least one set S’ must have high overlap with S...
e ...and hence ||p' — u|| < 20 as before.

e Recovery in list-decodable model [BBV08§|.



Implication: Stochastic Block Models

Set of an good and (1 — a)n bad vertices.
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Implication: Stochastic Block Models

Set of an good and (1 — a)n bad vertices.
e good <+ good: dense (avg. deg. = a)
e good <+ bad: sparse (avg. deg. = b)
e bad <> bad: arbitrary

Question: when can good set be recovered (in terms of «,a, b)?
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Implication: Stochastic Block Models

Using resilience in “truncated £;-norm", can show:

-Corollary

The set of good vertices can be approximately recovered when-
(a=b)” b)2 > 1og(Z/OO |

ever
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Implication: Stochastic Block Models

Using resilience in “truncated £;-norm", can show:

-Corollary

The set of good vertices can be approximately recovered when-
(a=b)” b)2 > 1og(Z/OO |

ever

Matches Kesten-Stigum threshold up to log factors!

For planted clique (a = n,b = n/2), recover cliques of size 2(y/nlogn).

e this is tight [S'17]
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Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.
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Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

We show:

e for strongly convex norms, resilient sets can be “pruned” to have
bounded covariance

e if injective norm is approximable, bounded covariance — efficient
algorithm with /€ error

e both true for £,-norms! (p € [2, >])

See [Li, 2017] and [Du, Balakrishnan, & Singh, 2017] for a non-£,-norm.
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Finite-sample bounds

Extension to SVD

Other Results
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Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

e based on simple pigeonhole arguments
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Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

e based on simple pigeonhole arguments
Benefit: from statistical problem to algorithmic problem.

Open questions:
e resilience for other problems (e.g. regression)
o efficient algos under other assumptions
e matching lower bounds?
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