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Reifying Contexts
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+“context sets”

Challenge: how to trade off contexts of different lengths?
—> Reify contexts as part of model!
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Reified Context Models

Given:
@ context sets Cq,...,CL

e features ¢i(ci_1,y;)

Define the model

L
Po (¥1:L;Cr:L—1) o< exp <Z 6" 9i(ci1 Ji)) - k(y.c)
——

i=1

consistency
Graphical model structure:

inference via
forward-backward!
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Adaptive Context Selection

@ Select context sets C; during forward pass of inference
@ Greedily select contexts with largest mass

a % cb

b c : ca
[c] —>e——»ea —» *xa—>etc.
d *\eb Kk
[¢] T~
:
C ' Ca

Biases towards short contexts unless there is high confidence.
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Precision
input x: m II r ﬁ ﬂ n [::
outputy: v o 1 c a n i c

Model assigns probability to each prediction, so can predict on most confident
subset.

Measure precision (# of correct words) vs. recall (# of words predicted).
@ comparison: beam search
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Precision

Measure precision (# of correct words) vs. recall (# of words predicted).

Word Recognition
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Partially Supervised Learning

Decipherment task:

cipher am—5,1+— 13, what+— 54, ...
latent z I  am what | am
outputy 13 5 54 13 5
Goal: determine cipher

Fit 2nd-order HMM with EM, using RCMs for approximate E-step.
@ use learned emissions to determine cipher.
@ again compare to beam search (Nuhn et al., 2013)
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Fraction of correctly mapped words:
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Start of training: little information, short contexts.
End of training: lots of information, long contexts.
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Discussion

RCMs provide both expressivity and coverage, which enable:
@ More accurate uncertainty estimates (precision)
@ Better partially supervised learning updates

Related work:
@ Coarse-to-fine inference (Petrov et al., 2006; Weiss et al., 2010)
@ Certificates of optimality (Sontag, 2010)

@ Tractable models (Poon & Domingos, 2011; Niepert & Domingos, 2014; Li
& Zemel, 2014; S. & Liang, 2015)

Reproducible experiments on Codalab: codalab.org/worksheets
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