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Structured Prediction Task
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Expressivity and Coverage
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Key idea: contexts!
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• expressivity (long contexts)
– capture complex dependencies
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• coverage (short contexts)
– better uncertainty estimates (precision)
– stabler partially supervised learning updates

Reifying Contexts
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Challenge: how to trade off contexts of different lengths?
=⇒ Reify contexts as part of model!

Reified Context Models
Given:
• context sets C1, . . . , CL
• features φi(ci−1, yi)

Define the model

pθ(y1:L, c1:L−1) ∝ exp

(
L∑
i=1

θ>φi(ci−1, yi)

)
· κ(y, c)︸ ︷︷ ︸

consistency

Graphical model structure:
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inference via

forward-backward!

Adaptive Context Selection
• Select context sets Ci during forward pass of inference
• Greedily select contexts with largest mass
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Biases towards short contexts unless there is high confidence.

Precision
Model assigns probability to each prediction, so can predict on most confi-
dent subset.

Measure precision (# of correct words) vs. recall (# of words predicted).
• comparison: beam search
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Word Recognition
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Partially Supervised Learning
Decipherment task:

cipher am 7→ 5, I 7→ 13, what 7→ 54, . . .
latent z I am what I am
output y 13 5 54 13 5

Goal: determine cipher
Fit 2nd-order HMM with EM, using RCMs for approximate E-step.
• use learned emissions to determine cipher.

• again compare to beam search
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Contexts During Training
Context lengths increase smoothly during training:
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Start of training: little information, short contexts.
End of training: lots of information, long contexts.

Discussion
RCMs provide both expressivity and coverage, which enable:
•More accurate uncertainty estimates (precision)

• Better partially supervised learning updates

Reproducible experiments on Codalab: codalab.org/worksheets
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