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Abstract

A classic tension exists between exact inference
in a simple model and approximate inference in
a complex model. The latter offers expressivity
and thus accuracy, but the former provides cover-
age of the space, an important property for con-
fidence estimation and learning with indirect su-
pervision. In this work, we introduce a new ap-
proach, reified context models, to reconcile this
tension. Specifically, we let the amount of con-
text (the arity of the factors in a graphical model)
be chosen “at run-time” by reifying it—that is,
letting this choice itself be a random variable in-
side the model. Empirically, we show that our
approach obtains expressivity and coverage on
three natural language tasks.

1. Introduction

Many structured prediction tasks across natural language
processing, computer vision, and computational biology
can be formulated as that of learning a distribution over
outputs y1., = (y1,...,yr) € V1.1 given an input :
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The thirst for expressive models (e.g., where y; depends
heavily on its context y;.;_1) often leads one down the
route of approximate inference, for example, to Markov
chain Monte Carlo (Brooks et al., 2011), sequential Monte
Carlo (Cappé et al., 2007; Doucet & Johansen, 2011), or
beam search (Koehn et al., 2003). While these methods in
principle can operate on models with arbitrary amounts of
context, they only touch a small portion of the output space
V1.r. Without such coverage, we miss out on two impor-
tant but oft-neglected properties:

e precision: In user-facing applications, it is important
to only predict on inputs where the system is confident,
leaving hard decisions to the user (Zhang et al., 2014).
Lack of coverage means failing to consider all alterna-

tive outputs, which leads to overconfidence and poor es-
timates of uncertainty.

e indirect supervision: When only part of the output y;.,
is observed, lack of coverage is even more problematic
than it is in the fully-supervised setting. An approximate
inference algorithm might not even consider the true y
(whereas one always has the true y in a fully-supervised
setting), which leads to invalid parameter updates (Yu
et al., 2013).

Of course, lower-order models admit exact inference and
ensure coverage, but these models have unacceptably low
expressive power. Ideally, we would like a model that
varies the amount of context in a judicious way, allocat-
ing modeling power to parts of the input that demand it.
Therein lies the principal challenge: How can we adap-
tively choose the amount of context for each position ¢ in a
data-dependent way while maintaining tractability?

In this paper, we introduce a new approach, which we call
reified context models. The key idea is based on reification,
a general idea in logic and programming languages, which
refers to making something previously unaccessible (e.g.,
functions or metadata of functions) a “first-class citizen”
and therefore available (e.g., via lambda abstraction or re-
flection) to formal manipulation. In the probabilistic mod-
eling setting, we propose reifying the contexts as random
variables in the model so that we can reason over them.
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Figure 1. Illustration of our method for handwriting recognition.
At each position, we keep track of a collection of contexts, and
learn a model that factorizes with respect to these contexts. Each
context remembers a certain amount of history, e.g. *o is all
length two sequences whose second character is o. By using con-
texts at multiple levels of resolution, we can obtain coverage of
the entire space while still modeling complex dependencies.
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Specifically, for each ¢ € {1,...,L — 1}, we maintain a
collection C; of contexts, each of which is a subset of ) .;
representing what we remember about the past (see Fig-
ure 1 for an example). We define a joint model over (y, ¢),
suppressing x for brevity:

L
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where k is a consistency potential, to be explained later.
The features ¢; now depend on the current context c;_1,
rather than the full history y;.;—;. The distribution over
(y, c) factorizes according to the graphical model below:

The factorization (3) implies that the family in (2) admits
efficient exact inference via the forward-backward algo-
rithm as long as each collection C; has small cardinality.

3)

Adaptive selection of context. Given limited computa-
tional resources, we only want to track contexts that are
reasonably likely to contain the answer. We do this by se-
lecting the context sets C; during a forward pass using a
heuristic similar to beam search, but unlike beam search,
we achieve coverage because we are selecting contexts
rather than individual variable values. We detail our selec-
tion method, called RCMS, in Section 4. We can think of
selecting the C;’s as selecting a model to perform inference
in, with the guarantee that all such models will be tractable.
Our method is simple to implement; see the appendix for
implementation details.

The goal of this paper is to flesh out the framework de-
scribed above, providing intuitions about its use and ex-
ploring its properties empirically. To this end, we start in
Section 2 by defining some tasks that motivate this work.
In Sections 3 and 4 we introduce reified context models
formally, together with an algorithm, RCMS, for select-
ing contexts adaptively at run-time. Sections 5-7 explore
the empirical properties of the RCMS method. Finally, we
discuss future research directions in Section 9.

2. Description of Tasks

To better understand the motivation for our work, we
present three tasks of interest, which are also the tasks used
in our empirical evaluation later. These tasks are word
recognition (a fully supervised task), speech recognition
(a weakly supervised task), and decipherment (an unsuper-
vised task). The first of these tasks is relatively easy while

the latter two are harder. We use word recognition to study
the precision of our method, the other two tasks to explore
learning under indirect supervision, and all three to under-
stand how our algorithm selects contexts during training.

Word recognition The first task is the word recognition
task from Kassel (1995); we use the “clean” version of the
dataset as in Weiss et al. (2012). This contains 6, 876 ex-
amples, split into 10 folds (numbered 0 to 9); we used fold
1 for testing and the rest for training. Each input is a se-
quence of 16 x 8 binary images of characters; the output is
the word that those characters spell. The first character is
omitted due to capitalization issues. Since this task ended
up being too easy as given, we downsampled each image to
be 8 x 4 (by taking all pixels whose coordinates were both
odd). An example input and output is given below:

inputz b & a4 ¢ =+, o A3
outputy r o j e ¢ t i o n s

Each individual image is too noisy to interpret in isolation,
and so leveraging the context of the surrounding characters
is crucial to achieving high accuracy.

Speech recognition Our second task is from the Switch-
board speech transcription project (Greenberg et al., 1996).
The dataset consists of 999 utterances, split into two chunks
of sizes 746 and 253; we used the latter chunk as a test set.
Each utterance is a phonetic input and textual output:

inputx h#yaeax swihrdcldh#
latent z  (alignment)
outputy yeah_it’s_weird

The alignment between the input and output is unobserved.

The average input length is 26 phonemes, or 2.5 seconds
of speech. We removed most punctuation from the output,
except for spaces, apostrophes, dashes, and dots.

Decipherment Our final task is a decipherment task sim-
ilar to that described in Nuhn & Ney (2014). In decipher-
ment, one is given a large amount of plain text and a smaller
amount of cipher text; the latter is drawn from the same dis-
tribution as the former but is then passed through a 1-to-1
substitution cipher. For instance, the plain text sentence “I
am what I am” might be enciphered as “13 5 54 13 5”:

latent z I am what I am
outputy 13 5 54 13 5

The task is to reverse the substitution cipher, e.g. determine
that 13 — I, 5 — am, etc.

We extracted a dataset from the English Gigaword corpus
(Graff & Cieri, 2003) by finding the 500 most common
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words and filtering for sentences that only contained those
words. This left us with 24, 666 utterances, of which 2, 000
were enciphered and the rest were left as plain text.

Note that this task is unsupervised, but we can hope to gain
information about the cipher by looking at various statistics
of the plaintext and ciphertext. For instance, a very basic
idea would be to match words based on their frequency.
This alone doesn’t work very well, but by considering bi-
gram and trigram statistics we can do much better.

3. Reified Context Models

We now formally introduce reified context models. Our
setup is structured prediction, where we predict an output
(y1,...,yL) € Y1 X -+ x Yr; we abbreviate these as y1.1,
and ).;,. While this setup assumes a generative model, we
can easily handle discriminative models as well as a vari-
able length L; we ignore these extensions for simplicity.

Our framework reifies the idea of context as a tool for effi-
cient inference. Informally, a context for ); is information
that we remember about ));.;_1. In our case, a context ¢; _1
is a subset of ));.;_1, which should contain y;.;_1: in other
words, ¢;_1 is “remembering” that y1.;—1 € ¢;—1. A con-
text set C;_1 is a collection of possible values for ¢;_;.

Formally, we define a canonical context set C; to be a col-
lection of subsets of V;.; satisfying two properties:!

e coverage: V;.; € C;
e closure: forc,c’ € C;,cnc € C; U {0}

An example of such a collection is given in Figure 2; as in
Section 1, notation such as xxa denotes the subset of );.3
where y3 = a.

We refer to each element of C; as a “context”. Given a
sequence y1.1,, we need to define contexts c;.7, 1 such that
Y14 € ¢; for all 7. The coverage property ensures that some
such context always exists: we can take ¢; = )1.;.

In reality, we would like to use the smallest (most precise)
context ¢; possible; the closure property ensures that this
is canonically defined: given a context ¢;_; € C;_1 and a
value y; € )Y;, we inductively define ¢; = f;(¢;—1,y;) to
be the intersection of all ¢ € C; that contain ¢; 1 X {y;}, or
equivalently the smallest such c. Example evaluations of f
are provided in Figure 2. Note that y;.; € ¢; always.

We now define a joint model over the variables y;.7, and

! This is similar to the definition of a hierarchical decompo-
sition from Steinhardt & Liang (2014). Our closure condition re-
places the more restrictive condition that c N ¢’ € {c, ¢, 0}.

Figure 2. Tlustration of a context set Cs. These sets form a hierar-
chy, allowing us to focus on certain specific values in V.3, while
also allocating some resources (via the context xxx) to model the
rest of V1.3 as well. To the right are some example outputs of f3.
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where k(y, ¢) def HLL;; I[e; = fi(ci—1,yi)] enforces con-
sistency of contexts. The distribution py factors according
to (3). One consequence of this is that the variables y;.r,
are jointly independent given c;.7,_1: the contexts contain
all information about interrelationships between the y;.

Mathematically, the model above is similar to a hidden
Markov model where ¢; is the hidden state. However, we
choose the context sets adaptively, giving us much greater
expressive power than an HMM, since we essentially have
exponentially many choices of hidden states (canonical
context sets) to select from at runtime.

Example: 2nd-order Markov chain. To provide more
intuition, we construct a 2nd-order Markov chain using our
framework (we can construct nth-order Markov chains in
the same way). We would like C; to “remember” the pre-
vious 2 values, i.e. (y;—1,¥;). To do this, we let C; con-
sist of all sets of the form Y;.;—o X {(yi—1,¥:)}; these sets
fix the value of (y;_1,y;) while allowing y;.;_o to vary
freely. Then fi+1(ci, yi+1) = yl;i,1 X {(y'w yi+1)}’ which
is well-defined since y; can be determined from c;.

If |V;| = V, then |C;] = V2 (or V™ for nth-order chains),
reflecting the cost of inference in such models.

As a technical note, we also need to include ).; in C; to
satisfy the coverage condition. However, ).; will never

actually appear as a context, as can be seen by the preced-
ing definition of f.

To finish the construction, suppose we have a family of
2nd-order Markov chains parameterized as

L
Po(Y1:n) o< exp <Z 9T¢i((yi—2ayi—1)>yi)> N C)

=1

Since ¢; depends only on (y;_s,y;—1), which can be de-
termined from c¢;_;, we can define an equivalent function
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q@i(ci,l, y;). Doing so, we recover a model family equiva-
lent to (4) after marginalizing out c1.;, 1 (since ¢1.7,—1 is a
deterministic function of y;.,, this last step is trivial).

4. Adaptive Context Sets

The previous section shows how to define a tractable model
for any collection of canonical context sets C;. We now
show how to choose such sets adaptively, at run-time. We
use a heuristic motivated by beam search, which greedily
chooses the highest-scoring configurations of y;.; based on
an estimate of their mass. We work one level of abstraction
higher, choosing contexts instead of configurations; this al-
lows us to maintain coverage while still being adaptive.

Our idea has already been illustrated to an extent in Fig-
ures 1 and 2: if some of our contexts are very coarse (such
as %~k in Figure 2) and others are much finer (such as abc in
Figure 2), then we can achieve coverage of the space while
still modeling complex dependencies. We will do this by
allowing each context ¢ € C; to track a suffix of y;.; of
arbitrary length; this contrasts with the Markov chain ex-
ample where we always track suffixes of length 2.

Precise contexts expose more information about y;.; and so
allow more accurate modeling; however, they are small and
C; is necessarily limited in size, so only a small part of the
space can be precisely modeled in this way. We thus want
to choose contexts that focus on high probability regions.

Our procedure. To do this, we define the partial model

i
o (Y1:i C1:—1) O exp ZHT¢j(Cj—layj) X K(y,c).
j=1

We then define the context sets inductively via the follow-
ing procedure, which takes as input a context size B:

o LetC; = {ci—1 x {yi} | cim1 € Ci1, s € Vi)
e Compute the mass of each element of C; under qb-

e Let C; be the B elements of C; with highest mass, to-
gether with the set V..

The remaining elements of C; will effectively be merged
into their least ancestor in C;. Note that each ¢ € C; fixes
the value of some suffix y;.; of y;.;, and allows y;.;_1 to
vary freely across );.;_1. Any such collection will auto-
matically satisfy the closure property.

The above procedure can be performed during the forward
pass of inference, and so is cheap computationally. Imple-
mentation details can be found in the appendix. We call
this procedure RCMS (short for “Reified Context Model
Selection”).

Caveat. There is no direct notion of an inference error in
the above procedure, since exact inference is possible by
design. An indirect notion of inference error is poor choice
of contexts, which can lead to less accurate predictions.

4.1. Relationship to beam search

The idea of greedily selecting contexts based on g is simi-
lar in spirit to beam search, an approximate inference algo-
rithm that greedily selects individual values of y;.; based
on qé. More formally, beam search maintains a beam
B; C V1.; of size B, constructed as follows:

o Let Bl =Bi_1 X Y.
e Compute the mass of each element of 53; under gj).
e Let BB; be the B elements of 5‘1 with highest mass.

The similarity can be made precise: beam search is a de-
generate instance of our procedure. Given B;, let C; =
{{b} | b€ B;} U{V.;}. Then C; consists of singleton sets
for each element of B;, together with });.; in order to en-
sure coverage. To get back to beam search (which doesn’t
have coverage), we add an additional feature to our model:
I[e; = Y1.4]. We set the weight of this feature to —oo, as-
signing zero mass to everything outside of B;.

Given any algorithm based on beam search, we can im-
prove it simply by allowing the weight on this additional
feature to be learned from data. This can help with the pre-
cision ceiling issue by allowing us to reason about when
beam search is likely to have made a search error.

4.2. Featurizations

We end this section with a recipe for choosing features
@i(ci—1,y;). We focus on n-gram and alignment features,
which are what we use in our experiments.

n-gram features. We consider nth-order Markov chains
over text, typically featurized by (n + 1)-grams:

Gi(Yr:i-1,Yi) = (UYimn:i = ’Q])UQA (5)
To extend this to our setting, define Vi = Y; U {*} and
Vi = | Y;. We can identify each pair (¢;_1,y;) with
a sequence s = o(c¢;—1,y;) € Y, in the same way as be-
fore: in each position j < 7 where y; is determined by
(ci-1,9i), 85 = y;; otherwise, s; = x. We then define our
n-gram model on the extended space V;_,,.;:

di(ci—1,Yi) = (H[U(Ciflayi) = g])@eii_m' ©)

Alignments. In the speech task from Section 2, we have
an input x1.7- and output y;.7,, where x and y have different
lengths and need to be aligned. To capture this, we add an
alignment z to the model, such as the one below:
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We represent z as a bipartite graph between {1, ..., L} and
{1,..., L'} with no crossing edges, and where every node
has degree at least one. The non-crossing condition allows
one phoneme to align to multiple characters, or one char-
acter to align to multiple phonemes, but not both. Our goal
is to model py(y, z | x).

To featurize alignment models, we place n-gram features
on the output y;, as well as on every group of n consecu-
tive edges. In addition, we augment the context ¢; to keep
track of what y; most recently aligned to (so that we can en-
sure the alignment is monotonic). We also maintain the B
best contexts at position 4 separately for each of the L’ pos-
sible values of z;; this modification to the RCMS heuristic
encourages even coverage of the space of alignments.

5. Generating High Precision Predictions

Recall that one symptom stemming from a lack of coverage
is poor estimates of uncertainty and the inability to generate
high precision predictions. In this section, we show that the
coverage offered by RCMS mitigates this issue compared
to beam search.

Specifically, we are interested in whether an algorithm can
find a large subset of test examples that it can classify with
high (= 99%) accuracy. Formally, assume a method out-
puts a prediction y with confidence p € [0, 1] for each ex-
ample. We sort the examples by confidence, and see what
fraction R of examples we can answer before our accuracy
drops below a given threshold P. In this case, P is the
precision and R is the recall.

Having good recall at high levels of precision (e.g., P =
0.99) is useful in applications where we need to pass on
predictions below the precision threshold for a human to
verify, but where we would still like to classify as many
examples as possible automatically.

We ran an experiment on the word recognition dataset de-
scribed in Section 2. We used a 4-gram model, training
both beam search (with a beam size of 10) and RCMS
(with 10 contexts per position, not counting ).;). In ad-
dition, we used beam search with a beam size of 200 to
simulate almost-exact inference. To train the models, we
maximized the approximate log-likelihood using AdaGrad
(Duchi et al., 2010) with a step size n of 0.2 and § = 10~4.

The precision-recall curve for each method is plotted in
Figure 3; confidence is the probability the model assigns
to the predicted output. Note that while beam search and
RCMS achieve similar accuracies (precision at R = 1) on
the full test set (87.1% and 88.5%, respectively), RCMS
is much better at separating out examples that are likely to
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Figure 3. On word recognition, precision-recall curve of beam
search with beam size 10, RCMS with 10 contexts per position,
and almost-exact inference simulated by beam search with a beam
of size 200. Beam search makes errors even on its most confident
predictions, while RCMS is able to separate out a large number
of nearly error-free predictions.

be correct. The flat region in the precision-recall curve for
beam search means that the model confidence and actual
error probability are unrelated across that region.

As a result, there is a precision ceiling, where it is simply
impossible to obtain high precision at any reasonable level
of recall. To quantify this effect, note that the recall at 99%
precision for beam search is only 16%, while for RCMS
it is 82%. For comparison, the recall for exact inference
is only 4% higher (86%). Therefore, RCMS is nearly as
effective as exact inference on this metric while requiring
substantially fewer computational resources.

6. Learning with Indirect Supervision

The second symptom of lack of coverage is the inabil-
ity to learn from indirect supervision. In this setting,
we have an exponential family model py(y,z | x)
exp(0T ¢(z,y,2)), where x and y are observed during
training but z is unobserved. The gradient of the (marginal)
log-likelihood is:

Viogpe(y | ) = Ezpy(slay) [0(2, 9, 2)] )
— By spo(y.zla) [0(, 8, 2)] 5

which is the difference between the expected features with
respect to the target distribution py(z | z,y) and the model
distribution py(y,z | «). In the fully supervised case,
where we observe z, the target term is simply ¢(x,y, z),
which provides a clear training signal without any infer-
ence. With indirect supervision, even obtaining a training
signal requires inference with respect to pg(z | z, y), which
is generally intractable.

In the context of beam search, there are several strategies
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to inferring z for computing gradients:

e Select-by-model: select beams based on g} (z | z), then
re-weight at the end by pg(y | z, ). This only works if
the weights are high for at least some “easy” examples,
from which learning can then bootstrap.

e Select-by-target: select beams based on g))(z | z,y).
Since y is not available at test time, parameters 6 learned
conditioned on y do not generalize well.

e Hybrid: take the union of beams based on both the
model and target distributions.

e Forced decoding (Gorman et al., 2011): first train a
simple model for which exact inference is tractable to
infer the most likely z, conditioned on x and y. Then
simply fix z; this becomes a fully-supervised problem.

To understand the behavior of these methods, we used them
all to train a model on the speech recognition dataset from
Section 2. The model places 5-gram indicator features on
the output as well as on the alignments. We trained using
AdaGrad with step size n = 0.2 and § = 10~*. For each
method, we set the beam size to 20. For forced decoding,
we used a bigram model with exact inference to impute z
at the beginning.

The results are shown in Figure 4(a). Select-by-model
doesn’t learn at all: it only finds valid alignments for 2 out
of the 746 training examples; for the rest, pg(y | z,z) is
zero for all alignments considered, thus providing no signal
for learning. Select-by-target quickly reaches high train-
ing accuracy, but generalizes extremely poorly because it
doesn’t learn to keep the right answer on the beam. The
hybrid approach does better but still not very well. The
only method that learns effectively is forced decoding.

While forced decoding works well, it relies on the idea that
a simple model can effectively determine z given access to
z and y. This will not always be the case, so we would like
methods that work well even without such a model. Reified
context models provide a natural way of doing this: we
simply compute pg(z | z, y) under the contexts selected by
RCMS, and perform learning updates in the natural way.

To test RCMS, we trained it in the same way using 20 con-
texts per position. Without any need for an initialization
scheme, we obtain a model whose test accuracy is better
than that of forced decoding (see Figures 4(b),4(c)).

Decipherment: Unsupervised Learning. We now turn
our attention to an unsupervised problem: the decipher-
ment task from Section 2. We model decipherment as a hid-
den Markov model (HMM): the hidden plain text evolves
according to an n-th order Markov chain, and the cipher
text is emitted based on a deterministic but unknown 1:1
substitution cipher (Ravi & Knight, 2009).

All the methods we described for speech recognition break
down in the absence of any supervision except select-by-
model. We therefore compare only three methods: select-
by-model (beam search), RCMS, and exact inference. We
trained a 1st-order (bigram) HMM using all 3 methods, and
a 2nd-order (trigram) HMM using only beam search and
RCMS, as exact inference was too slow (the vocabulary
size is 500). We used the given plain text to learn the tran-
sition probabilities, using absolute discounting (Ney et al.,
1994) for smoothing. Then, we used EM to learn the tran-
sition probabilities; we used Laplace smoothing for these
updates.

The results are shown in Figure 5. We measured perfor-
mance by mapping accuracy: the fraction of unique sym-
bols that are correctly mapped (Nuhn et al., 2013). First,
we compared the overall accuracy of all methods, setting
the beam size and context size both to 60. We see that all
2nd-order models outperform all 1st-order models, and that
beam search barely learns at all for the 1st-order model.

Restricting attention to 2nd-order models, we measure the
effect of beam size and context size on accuracy, plotting
learning curves for sizes of 10, 20, 30, and 60. In all cases,
RCMS learns more quickly and converges to a more accu-
rate solution than beam search. The shapes of the learning
curves are also different: RCMS learns quickly after a few
initial iterations, while beam search slowly accrues infor-
mation at a roughly constant rate over time.

7. Refinement of Contexts During Training

When learning with indirect supervision and approximate
inference, one intuition is that we can “bootstrap” by first
learning from easy examples, and then using the informa-
tion gained from these examples to make better inferences
about the remaining ones (Liang et al., 2011). However,
this can fail if there are insufficiently many easy examples
(as in the speech task), if the examples are hard to identify,
or if they differ statistically from the remaining examples.

We think of the above as “vertical bootstrapping”: using the
full model on an increasing number of examples. RCMS
instead performs “horizontal bootstrapping”: for each ex-
ample, it selects a model (via the context sets) based on the
information available. As training progresses, we expect
these contexts to become increasingly fine as our parame-
ters improve.

To measure this quantitatively, we define the length of a
context c¢;—1 to be the number of positions of y;.;_1 that
can be determined from c;_; (number of non-x’s). We plot
the average length (weighted by mass under ¢j) as train-
ing progresses. The averages are updated every 50 and 100
training examples respectively for word and speech recog-
nition. For decipherment, they are computed once for each
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Figure 4. Left: character error rate (CER) of all beam search-based methods on the speech task, for 5 passes of the training data; note
that an empty output always has a CER of 1.0. Middle: CER of forced decoding and RCMS over 5 random permutations of the data;
the solid line is the median. Right: exact-match accuracy over the same 5 permutations.

0.8
0.7
9
s 0.6
—_
3 0.5
®
0\0'47
C
‘5 0.3
o exact (n=1)
g 0.2 — RCMS (n=1)|{
~— beam (n=1)
0.1 +— RCMS (n=2)|{
a—4 beam (n=2)
0% 5 10 15 20

training passes

pping accuracy
I

0.8

&4 RCMS (10)
0.7H = beam (10)
4+—4 RCMS (20)
beam (20)
+—4 RCMS (30)
beam (30)
RCMS (60)
beam (60)

I

I

I

ma
o o o
= N w

o
e

5 10 15 20
training passes

Figure 5. Results on the decipherment task. Left: accuracy for a fixed beam/context size as the model order varies; approximate inference
with a 2nd-order HMM using RCMS outperforms both beam search in the same model and exact inference in a simpler model. Right:
effect of beam/context size on accuracy for the 2nd-order HMM. RCMS is much more robust to changes in beam/context size.

full pass over the training data (since EM only updates the
parameters once per pass).

Figure 6 shows that the broad trend is an increase in the
context length over time. For both the word and speech
tasks, there is an initial overshoot at the beginning that is
not present in the decipherment task; this is because the
word and speech tasks are trained with stochastic gradient
methods, which often overshoot and then correct in param-
eter space, while for decipherment we use the more stable
EM algorithm.

Since we start by using coarse contexts and move to finer
contexts by the end of training, RCMS can be thought of
as a coarse-to-fine training procedure (Petrov & Charniak,
2011). However, instead of using a pre-defined, discrete
set of models for initialization, we organically adapt the
amount of context on a per-example basis.

8. Related work

Kulesza & Pereira (2007) first study the interaction be-

tween approximate inference and learning, showing that
even in the fully supervised case approximate inference
can be seriously detrimental; Finley & Joachims (2008)
show that approximate inference algorithms which over-
generate possible outputs interact best with learning; this
further supports the need for coverage when learning.

Four major approaches have been taken to address the prob-
lem of learning with inexact inference. The first modifies
the learning updates to account for the inference procedure,
as in the max-violation perceptron and related algorithms
(Huang et al., 2012; Zhang et al., 2013; Yu et al., 2013);
reinforcement learning approaches to inference (Daumé 111
et al., 2009; Shi et al., 2015) also fit into this category. An-
other approach modifies the inference algorithm to obtain
better coverage, as in coarse-to-fine inference (Petrov et al.,
2006; Weiss et al., 2010), where simple models are used to
direct the focus of more complex models. Pal et al. (2006)
encourage coverage for beam search by adaptively increas-
ing the beam size. A third approach is to use inference
procedures with certificates of optimality, based on either
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Figure 6. Average context length vs. number of learning updates for the word recognition, speech, and decipherment tasks. For word
and speech recognition we take a cumulative average (to reduce noise).

duality gaps from convex programs (Sontag, 2010) or vari-
ational bounds (Xing et al., 2002; Wainwright et al., 2005).

Finally, another way of sidestepping the problems of ap-
proximate inference is to learn a model that is already
tractable. While classical tractable model families based
on low treewidth are often insufficiently expressive, more
modern families have shown promise; for instance, sum-
product networks (Poon & Domingos, 2011) can express
models with high treewidth while still being tractable, and
have achieved state-of-the-art results for some tasks. Other
work includes exchangeable variable models (Niepert &
Domingos, 2014) and mean-field networks (Li & Zemel,
2014).

Our method RCMS also attempts to define tractable model
families, in our case, via a parsimonious choice of la-
tent context variables, even though the actual distribution
over y;.;, may have arbitrarily high treewidth. We adap-
tively choose the model structure for each example at “run-
time”, which distinguishes our approach from the afore-
mentioned methods, though sum-product networks have
some capacity for expressing adaptivity implicitly. We be-
lieve that such per-example adaptivity is important for ob-
taining good performance on challenging structured predic-
tion tasks.

Certain smoothing techniques in natural language process-
ing also interpolate between contexts of different order,
such as absolute discounting (Ney et al., 1994) and Kneser-
Ney smoothing (Kneser & Ney, 1995). However, in such
cases all observed contexts are used in the model; to get the
same tractability gains as we do, it would be necessary to
adaptively sparsify the model for each example at run-time.
Some Bayesian nonparametric approaches such as infinite
contingent Bayesian networks (Milch et al., 2005) and hi-
erarchical Pitman-Yor processes (Teh, 2006; Wood et al.,
2009) also reason about contexts; again, such models do
not lead to tractable inference.

9. Discussion

We have presented a new framework, reified context mod-
els, that reifies context as a random variable, thereby defin-
ing a family of expressive but tractable probability distribu-
tions. By adaptively choosing context sets at run-time, our
RCMS method uses short contexts in regions of high un-
certainty and long contexts in regions of low uncertainty,
thereby reproducing the behavior of coarse-to-fine train-
ing methods in a more organic and fine-grained manner.
In addition, because RCMS maintains full coverage of the
space, it is able to break through the precision ceiling faced
by beam search. Coverage also helps with training under
indirect supervision, since we can better identify settings
of latent variables that assign high likelihood to the data.

At a high level, our method provides a framework for struc-
turing inference in terms of the contexts it considers; be-
cause the contexts are reified in the model, we can also sup-
port queries about how much probability mass lies in each
context. These two properties together open up intriguing
possibilities. For instance, one could imagine a multi-pass
approach to inference where the first pass uses small con-
text sets for each location, and later passes add additional
contexts at locations where there is high uncertainty. By
adaptively adding context only when it is needed, we could
speed up inference by a potentially large amount.

Another direction of research is to extend our construction
beyond a single left-to-right ordering. In principle, we can
consider any collection of contexts that induce a graphical
model with low treewidth, rather than only considering the
factorization in (3). For problems such as image segmenta-
tion where the natural structure is a grid rather than a chain,
such extensions may be necessary.

Finally, while we currently learn how much weight to as-
sign to each context, we could go one step further and learn
which contexts to propose and include in the context sets C;
(rather than relying on a fixed procedure as in the RCMS
algorithm). Ideally, one could specify a large number of
possible strategies for building context sets, and the best
strategy to use for a given example would be learned from
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data. This would move us one step closer to being able to
employ arbitrarily expressive models with the assurance of
an automatic inference procedure that can take advantage
of the expressivity in a reliable manner.
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A. Implementation Details

Recall that to implement the RCMS method, we need to
perform the following steps:

1. LetC; = {cic1 x {yi} | cic1 € Ciza, i € Vi)

2. Compute what the mass of each element of C; would
be if we used ¢} as the model and C; as the collection
of contexts.

3. Let C; be the B elements of (fz with highest mass, to-
gether with the set )1.;.

As in Section 4, each context in C; can be represented by a
string s1.;, where s; € V; U {x}. We will also assume an
arbitrary ordering on Y; U {x} that has * as its maximum
element.

In addition, we use two datatypes: E (for “expand”), which
keeps track of elements of C:, and M (for “merge”), which keeps
track of elements of C;. More precisely, if ¢;—1 is represented
by an object m;_1 of type M, then E(m;_1,y;) represents ¢;—1 X
{y:}; and M(E(m;—1, y:)) represents ¢;—1 X {y; } as well, with the
distinction that it is a member of C; rather than C;. The distinction
is important because we will also want to merge smaller contexts
into objects of type M. For both E and M objects, we maintain a
field len, which is the length of the suffix of y;.; that is specified
(e.g., if an object represents V1.3 X {ya:5}, then its len is 2).

Throughout our algorithm, we will maintain 2 invariants:

e C; and C; will be sorted lexicographically (e.g. based first
on s;, then s;_1, etc.)

o A list lf(;,l of length len((fi) is maintained, such
that the longest common suffix of C;[a] and C;[b] is
mingeq,p) lesi[c]. A similar list lcs; is maintained for C;.

Step 1. To
do:
Ci=]]
for j =0tolen(Y;) —1do
for k =0tolen(C;—1) — 1 do
ifk+1< 1en(C¢,1) then
les;.append(les;—1[k] + 1)
else
lcs;.append(0)
end if
C;.append(E(C;[k], V:i[4])
end for
end for

perform step 1  above, we  just

The important observation is that if two sequences end in the same
character, their lcs is one greater than the lcs of the remaining se-
quence without that character; and if they end in different charac-
ters, their lcs is 0.

Each E keeps track of a forward score, defined as

E(m, y).forward = m.forward x exp(6 ¢(m,y)).  (8)

Step 2. For step 2, we find the B elements ¢ of C; with the
largest forward score; we set a flag ¢.active to true for each such
C.

Step 3. Step 3 contains the main algorithm challenge, which is
to efficiently merge each element of C; into its least ancestor in C;.
If we think of C; as a tree (as in Figure 2), we can do this by essen-
tially performing a depth-first-search of the tree. The DFS goes
backwards in the lexicographic ordering, so we need to reverse the
lists C; and lcs; at the end.

> merge and update lcs
stack = ||
Ci =
les; =[]
I+ o0 -
for j =len(C;) — 1 to 0 do
! < min(l, lcs;[4])
while [ < stack[—1]. len do
t> then current top of stack is not an ancestor of ;]
stack.pop()
end while
if C;[j].active then
m = M(Ci[j])
lcs;.append(l)
C;.append(m)
stack.push(m)
l <+ o0
else ~
> merge C;[j] into its least ancestor

stack[—1]. absorb(C;[j])
end if
end for
lcs;.reverse()

C;.reverse()

If m € C; has absorbed elements ey, ...
m.forward as Z?:l e;j.forward.

, ex, then we compute

After we have constructed Ci,...,C;—1, we also need to send
backward messages for inference. If e € C; is merged into
m € C;, then e.backward = m.backward. If m € C;
expands to E(m,y) for y € Yiy1, then m.backward =
Zyeyiﬂ E(m, y). backward x exp(8" ¢(m,y)).  The (un-
normalized) probability mass of an object is then simply the prod-
uct of its forward and backward scores; we can compute the nor-
malization constant by summing over C;.

In summary, our method can be coded in three steps; first, during
the forward pass of inference, we:
1. Expand to C; and construct lcfvsl

2. Sort by forward score and mark active nodes in C; for inclu-
sion in C;.

3. Merge each node in C; into its least ancestor in C;, using a
depth-first-search.

Finally, once all of the C; are constructed, we perform the back-
ward pass:

4. Propagate backward messages and compute the normaliza-
tion constant.
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B. Further Details of Experimental Setup

We include here a few experimental details that did not fit
into the main text. When training with AdaGrad, we per-
formed several stochastic gradient updates in parallel, sim-
ilar to the approach described in Recht et al. (2011) (al-
though we parallelized even more aggressively at the ex-
pense of theoretical guarantees). We also used a random-
ized truncation scheme to round most small coordinates of
the gradients to zero, which substantially reduces memory
usage as well as concurrency overhead.

For decipherment, we used absolute discounting with dis-
count 0.25 and smoothing 0.01, and Laplace smoothing
with parameter 0.01. For the 1st-order model, beam search
performs better if we use Laplace smoothing instead of ab-
solute discounting (though still worse than RCMS). In or-
der to maintain a uniform experimental setup, we excluded
this result from the main text.

For the hybrid selection algorithm in the speech experi-
ments, we take the union of the beams at every step (as op-
posed to computing two sets of beams separately and then
taking a single union at the end).

C. Additional Files

In the supplementary material, we also include the source
code and datasets for the decipherment task. A README is
included to explain how to run these experiments.



