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Abstract

Markov Chain Monte Carlo (MCMC) algorithms
are often used for approximate inference inside
learning, but their slow mixing can be difficult to
diagnose and the approximations can seriously
degrade learning. To alleviate these issues, we
define a new model family using strong Doe-
blin Markov chains, whose mixing times can
be precisely controlled by a parameter. We
also develop an algorithm to learn such models,
which involves maximizing the data likelihood
under the induced stationary distribution of these
chains. We show empirical improvements on two
challenging inference tasks.

1. Introduction

Conventional wisdom suggests that rich features and
highly-dependent variables necessitate intractable infer-
ence. Indeed, the dominant paradigm is to first define
a joint model, and then use approximate inference (e.g.,
MCMC) to learn that model. While this recipe can generate
good results in practice, it has two notable drawbacks: (i)
diagnosing convergence of Markov chains is extremely dif-
ficult (Gelman and Rubin, 1992; Cowles and Carlin, 1996);
and (ii) approximate inference can be highly suboptimal
in the context of learning (Wainwright, 2006; Kulesza and
Pereira, 2007).

In this paper, we instead use MCMC to define the model
family itself: For a given 7', we construct a family of
Markov chains using arbitrary rich features, but whose
mixing time is guaranteed to be at most O(T"). The corre-
sponding stationary distributions make up the model fam-
ily. We can think of our Markov chains as parameteriz-
ing a family of “computationally accessible” distributions,
where the amount of computation is controlled by 7.

For concreteness, suppose we are performing a structured
prediction task from input x to a complex output y. We
construct Markov chains of the following form, called

strong Doeblin chains (Doeblin, 1940):

Ae(yt | yi—1,2) = (1 —€)Ag(ye | Ye—1, ) + eug(y; | ),
(1

where € is a mixture coefficient and § parameterizes Ay and
ug. Importantly, uy does not depend on the previous state
y;—1. For intuition, think of ug as a simple tractable model
and Ay as Gibbs sampling in a complex intractable model.
With probability 1 — €, we progress according to Ay, and
with probability € we draw a fresh sample from ug, which
performs an informed random restart. When ¢ = 1, we
are drawing i.i.d. samples from wug; we therefore mix in a
single step, but our stationary distribution must necessarily
be very simple. When ¢ = 0, the stationary distribution can
be much richer, but we have no guarantees on the mixing
time. For intermediate values of e, we trade off between
representational power and mixing time.

A classic result is that a given strong Doeblin chain mixes
in time at most % (Doeblin, 1940), and that we can draw an
exact sample from the stationary distribution in expected
time O(%) (Corcoran and Tweedie, 1998). In this work, we
prove new results that help us understand the strong Doe-
blin model families. Let F and F be the family of station-
ary distributions corresponding to Ag and Ay as defined in
(1), respectively. Our first result is that as € decreases, the
stationary distribution of any Ay monotonically approaches
the stationary distribution of the corresponding Ay (as mea-
sured by either direction of the KL divergence). Our sec-
ond result is that if % is much larger than the mixing time
of Ay, then the stationary distributions of Ay and Ay are
close under a certain Mahalanobis distance. This shows
that any member of F that is computationally accessible
via the Markov chain is well-approximated by its counter-
part in F.

The figure above shows F and F, together with the subset
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Fo of F whose Markov chains mix quickly. F (approxi-
mately) covers Fy, and contains some distributions outside
of F entirely.

In order to learn over F , we show how to maximize the
likelihood of the data under the stationary distribution of
Ay. Specifically, we show that we can compute a stochastic
gradient of the log-likelihood in expected time O(2). Thus,
in a strong sense, our objective function explicitly accounts
for computational constraints.

We also generalize strong Doeblin chains, which are a mix-
ture of two base chains, uy and Ay, to staged strong Doe-
blin chains, which allow us to combine more than two base
chains. We introduce an auxiliary variable z representing
the “stage” that the chain is in. We then transition between
stages, using the base chain corresponding to the current
stage z to advance the concrete state y. A common ap-
plication of this generalization is defining a sequence of
increasingly more complex chains, similar in spirit to an-
nealing. This allows sampling to become gradually more
sensitive to the structure of the problem.

We evaluated our methods on two tasks: (i) inferring words
from finger gestures on a touch screen and (ii) inferring
DNF formulas for program verification. Unlike many
structured prediction problems where local potentials pro-
vide a large fraction of the signal, in the two tasks above,
local potentials offer a very weak signal; reasoning care-
fully about the higher-order potentials is necessary to per-
form well. On word inference, we showed that learning
strong Doeblin chains obtained a 3.6% absolute improve-
ment in character accuracy over Gibbs sampling while re-
quiring 5x fewer samples. On DNF formula inference, our
staged strong Doeblin chain obtains an order of magnitude
speed improvement over plain Metropolis-Hastings.

To summarize, the contributions of this paper are: We for-
mally define a family of MCMC algorithms based on strong
Doeblin chains with guaranteed fast mixing times (Sec-
tion 2). We provide an extensive analysis of the theoretical
properties of this family (Section 3), together with a gener-
alization to a staged version (Section 3.1). We provide an
algorithm for learning the parameters of a strong Doeblin
chain (Section 4). We demonstrate superior experimental
results relative to baseline MCMC samplers on two tasks,
word inference and DNF formula synthesis (Section 5).

2. A Fast-Mixing Family of Markov Chains

Given a Markov chain with transition matrix A(y; | y1—1)
and a distribution u(y;), define a new Markov chain with
transitions given by A(y, | y,_1) 1—e)A(ys | ye—1) +
eu(y:). (We suppress the dependence on 6 and x for now.)

et
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Figure 1. Left: A simple 3-state Markov chain. Arcs denote transi-
tion probabilities. Right: plot of the stationary probability of state
1 as a function of restart probability ¢, for § = 10™*. Note the two

regimes for € < § and € > 4.

In matrix notation, we can write A as
7 def T
A= (1—-€A+eul'. (2)

In other words, with probability ¢ we restart from wu; oth-
erwise, we transition according to A. Intuitively, A should
mix quickly because a restart from v renders the past inde-
pendent of the future (we formalize this in Section 3). We
think of u as a simple tractable model that provides cover-
age, and A as a complex model that provides precision.

Simple example. To gain some intuition, we work
through a simple example with the Markov chain A de-
picted in Figure 1. The stationary distribution of this chain
is [ 5755 3295 3735 |- splitting most of the probabil-
ity mass evenly between states 1 and 3. The mixing time
of this chain is approximately %, since once the chain falls
into either state 1 or state 3, it will take about % steps for it
to escape back out. If we run this Markov chain for 7" steps
with T < 3, then our samples will be either almost all in
state 1 or almost all in state 3, and thus will provide a poor
summary of the distribution. If instead we perform ran-
dom restarts with probability e from a uniform distribution
w over {1,2,3}, then the restarts give us the opportunity
to explore both modes of the distribution. After a restart,
however, the chain will more likely fall into state 3 than
state 1 (g probability vs. %), so for ¢ > § the stationary
distribution will be noticeably perturbed by the restarts. If
€ < 6, then there will be enough time for the chain to mix
between restarts, so this bias will vanish. See Figure 1 for
an illustration of this phenomenon.

3. Theoretical Properties

Markov chains that can be expressed according to (2) are
said to have strong Doeblin parameter ¢ (Doeblin, 1940).
In this section, we characterize the stationary distribution
and mixing time of fl, and also relate the stationary distri-
bution of A to that of A as a function of e. Often the easiest
way to study the mixing time of A is via its spectral gap,
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which is defined as 1 — Ay(A), where A2(A) is the second-
largest eigenvalue (in complex norm). A standard result for
Markov chains is that, under mild assumptions, the mixing

time of A is O (m) We assume throughout this sec-

tion that A is ergodic but not necessarily that it is reversible.
See Section 12.4 of Levin et al. (2009) for more details.

Our first result relates the spectral gap (and hence the mix-
ing time) to e. This result (as well as the next) are well-
known but we include them for completeness. For most
results in this section, we sketch the proof here and provide
the full details in the appendix.

Proposition 3.1. The spectral gap of A is at least €; that

is, 1 — A2(A) > e. In particular, A mixes in time O(%).

The key idea is that all eigenvectors of Aand A (except

for the stationary distribution) are equal, and that A, (A) =
(1 —e)Ag(A) fork > 1.

Having established that A mixes quickly, the next step is to
determine its stationary distribution:

Proposition 3.2. Let 7 be the stationary distribution of A
Then

ﬁzeZ(l—ﬁ)jAjuze(I— 1—eA) u. (3
§=0

This can be directly verified algebraically. The summa-
tion over j shows that we can in fact draw an exact sample
from 7 by drawing T' ~ Geometric(e), initializing from
u, and transitioning 7" times according to A. This is intu-
itive, since at a generic point in time we expect the most
recent sample from w to have occurred Geometric(e) steps
ago. Note that E[T' + 1] = %, which is consistent with the
fact that the mixing time is O(%) (Proposition 3.1).

We would like to relate the stationary distributions 7 and 7
of A and A. The next two results (which are new) do so.

Let 7. denote the stationary distribution of A at a particular
value of ¢; note that 71 = w and 79 = 7. We will show that
7. approaches m monotonically, for both directions of the
KL divergence. In particular, for any € < 1, 7. is at least as
good as u at approximating 7.

To show this, we make use of the following lemma from
Murray and Salakhutdinov (2008):

Lemma 3.3. If B is a transition matrix with stationary
distribution w, then KL (w || Br') < KL (7 || 7') and
KL (B’ || m) < KL («' || 7).

Using this lemma, we can prove the following monotonic-

ity result:

"If T ~ Geometric(¢), we have P[T = j] = ¢(1 — ¢)? for
J=0.
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Figure 2. Markov chains over (a) two stages (strong Doeblin
chains); and (b) three stages (restart from w followed by transi-
tions from A; and then from As).

Proposition 3.4. Both KL (7. || 7) and KL (7 || 7.) are
monotonic functions of e.

The idea is to construct a transition matrix B that maps
Tre, to 7, for given ez < €1, then show that its stationary
distribution is 7 and apply Lemma 3.3.

With Proposition 3.4 in hand, a natural next question is how
small ¢ must be before 7 is reasonably close to 7. Propo-
sition 3.5 provides one such bound: 7 is close to 7 if € is
small compared to the spectral gap 1 — Ao (A).

Proposition 3.5. Suppose that A satisfies detailed balance
with respect to w. Let T be the stationary distribution of A.

def " 2
Define dx (') = |7 =7 |lqing(my—1 = /1 + 2, T,

where ||v||ar is the Mahalonobis distance Vv Mv. Then
A (%) < 1574y - dr(w)- (In particular, d-(%) < 1if
e < (1= Aa(A))/ds(u).)

The proof is somewhat involved, but the key step is to es-
tablish that d. (7’) is convex in 7" and contractive with re-
spect to A (more precisely, that d . (An") < Aa(A)d, (7).

Proposition 3.5 says that if A mixes quickly, then A and A
will have similar stationary distributions. This serves as a
sanity check: if A already mixes quickly, then 7 is a good
approximation to 7; otherwise, the Doeblin construction
ensures that we are at least converging to some distribution,
which by Proposition 3.4 approximates 7 at least as well as
u does.

3.1. Staged strong Doeblin chains

Recall that to run a strong Doeblin chain A, we first sam-
ple from w, and then transition according to A for approx-
imately % steps. The intuition is that sampling from the
crude distribution u faciliates global exploration of the state
space, while the refined transition A hones in on a mode.
However, for complex problems, there might be a consider-
able gap between what is possible with exact inference (u)
and what is needed for accurate modeling (A). This moti-
vates using multiple stages of MCMC to bridge the gap.

To do this, we introduce an auxiliary variable z € Z denot-
ing which stage of MCMC we are currently in. For each
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stage z, we have a Markov chain A, (y; | y:—1) over the
original state space. We also define a Markov chain C'(z; |
z¢—1) over the stages. To transition from (y;_1,2;—1) to
(yt, 2¢), we first sample z; from C(z; | z:—1) and then
ye from A, (y¢ | yi—1). If there is a special state z* for
which A« (y; | y4—1) = u(y:) (i.e., A.- does not depend
on y;_1), then we call the resulting chain a staged strong
Doeblin chain.

For example, if z € {0,1} and we transition from 0 to 1
with probability 1 — € and from 1 to O with probability e,
then we recover strong Doeblin chains assuming z* = 0
(Figure 2(a)). As another example (Figure 2(b)), let z €
{0,1,2}. When z = z* = 0, transition according to a
restart distribution 1T ; when z = 1, transition according
to a simple chain A;; and when z = 2 transition according
to a more complex chain A,. If we transition from z = 0
to z = 1 with probability 1, from z = 1 to z = 2 with
probability €1, and from 2z = 2 to z = 0 with probability e,,
1

then we will on average draw 1 sample from u, o samples

from Aq, and é samples from As.

We now show that staged strong Doeblin chains mix
quickly as long as we visit z* reasonably often. In par-
ticular, the following theorem provides guarantees on the
mixing time that depend only on z* and on the structure of
C(z¢ | #t—1), analogous to the previous dependence only
on €. The condition of the theorem asks for times a and b
such that the first time after a that we hit z* is almost inde-
pendent of the starting state zg, and is less than b with high
probability.

Theorem 3.6. Let M be a staged strong Doeblin chain on

Z x Y. Let 1, be the earliest time s > a for which zs =

. def
z*. Let Bq,s = min ez Plr, = s | 20 = 2] and vy, =
Zzza Ba,s. Then M? has strong Doeblin parameter Ya,b-

In particular, the spectral gap of M is at least 7‘;)’17. (Setting

a = b =1 recovers Proposition 3.1.)

The key idea is that, conditioned on 7,, (ys, 23) is indepen-
dent of (yo, o) for all b > 7,. For the special case that the
stages form a cycle as in Figure 2, we have the following
corollary:

Corollary 3.7. Let C be a transition matrix on {0, ..., k—
1} such that C(z: = i | 2e-1 = 1) = 1 —6; and C(z =
(i+1)modk | 2,1 = i) = ;. Suppose that §p_1 <
min{dg, . ..,0k—2}. Then the spectral gap of

Op—1
78 *

1
max(2,k—1)
the joint Markov chain is at least

The key idea is that, when restricting to the time interval
[2/0k—1,3/dk_1], the time of first transition from k& — 1 to
0 is approximately Geometric(dy_1)-distributed (indepen-
dent of the initial state), which allows us to invoke Theo-
rem 3.6. We expect the optimal constant to be much smaller
than 78.

4. Learning strong Doeblin chains

Section 3 covered properties of strong Doeblin chains (1 —
€)Ag + eug 17 for a fixed parameter vector 6. Now we turn
to the problem of learning # from data. We will focus on the
discriminative learning setting where we are given a dataset
{(z®,y®)}7_, and want to maximize the conditional log-
likelihood:

1< , .
0(0) =~ logps(y" [ ), )
=1

where now py is the stationary distribution of 1219 =(1-
€)Ag + eugl . We assume for simplicity that the chains
Ay and uy are given by conditional exponential families:

Ay | ¢, 2)  exp (07 @z, o/, y) — log Z(6; 2, y)) ,
ug(y | 7) & exp (07 ¢(x,y) —log Z(6;2)),  (5)

where each ¢ outputs a feature vector and the Z are parti-
tion functions. By Proposition 3.1, Ay mixes quickly for all
6. On the other hand, the parameterization of Ay captures a
rich family of transition kernels, including Gibbs sampling.

At a high level, our learning algorithm performs stochas-
tic gradient descent on the negative log-likelihood. How-
ever, the negative log-likelihood is only defined implicitly
in terms of the stationary distribution of a Markov chain,
so the main challenge is to show that it can be computed
efficiently. To start, we assume that we can operate on the
base chains uy and Ay for one step efficiently:

Assumption 4.1. We can efficiently sample y from ug(- |

9log u (ylo)
00

x) and Ag(- | ¥',x), as well as compute and

dlog Ag(yly',x)
060 .

Under Asssumption 4.1, we will show how to efficiently
compute the gradient of log pg(y(?) | 2(¥)) with respect to
f. The impatient reader may skip ahead to the final pseu-
docode, which is given in Algorithm 1.

For convenience, we will suppress the dependence on x and
i and just refer to py(y) instead of pg(y» | (V). Comput-
ing the gradient of log py(y) is non-trivial, since the for-
mula for py is somewhat involved:

po(y) = € (1 — ) [Afug](y)- 6)
j=0

We are helped by the following generic identity on gra-
dients of conditional log-probabilities, proved in the ap-
pendix.

Lemma 4.2. Let z have distribution py(z) parameterized
by a vector 0. Let S be any measurable set. Then

dlogpy(z € S) _E 0log ps(2) s
o0 i 00

€ S} )]
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We can utilize Lemma 4.2 by interpreting y | 6 as the out-
put of the following generative process, which by Proposi-
tion 3.2 yields the stationary distribution of Ay:

e Sample yo from ugp and y;41 | y: from Ay for t =
0,1,....
e Sample T' ~ Geometric(e) and let y = yr.

We then invoke Lemma 4.2 with z = (T, yo.7) and S en-
coding the event that yr = y. As long as we can sample
from the posterior distribution of (T, yo.7) conditioned on
yr = Yy, we can compute an estimate of % log pe(y) as
follows:

e Sample (T, yo.7) | yr = .

e Return 310gP96(9T7yo:T) _ Ologug(yo)

00
T OlogAg(yelyi—1)
+ i - 86

4.1. Sampling schemes for (T, yo.7)

By the preceding comments, it suffices to construct a sam-
pler for (T, yo.7) | yr = y. A natural approach is to use
importance sampling: sample (T, yo.7—1), then weight by
p(yr = y | yr—1). However, this throws away a lot of
work — we make 7' MCMC transitions but obtain only one
sample (7, yo.7) with which to estimate the gradient.

We would like to ideally make use of all the MCMC transi-
tions when constructing our estimate of (7', yo.7) | yr = .
For any ¢t < T, the pair (¢,yo.:) would itself have been
a valid sample under different randomness, and we would
like to exploit this. Suppose that we sample 7" from some
distribution F' and let ¢(t) be the probability that T > ¢
under F'. Then we can use the following scheme:

e Sample 7" from F', then sample yo.7—1.

e(1—e)t

e Fort = 0,...,T, weight (¢,y0.t—1) by 0

Py =y | ys—1)-

X

For any ¢, this yields unbiased (although unnormalized)
weights (see Section B in the appendix). Typically we will
choose q(t) = (1 — €)%, e.g. F is a geometric distribu-
tion. If the gy, are perfectly correlated, this will not be
any more effective than vanilla importance sampling, but
in practice this method should perform substantially bet-
ter. Even though we obtain weights on all of yg.r, these
weights will typically be highly correlated, so we should
still repeat the sampling procedure multiple times to min-
imize the bias from estimating the normalization constant.
The full procedure is given as pseudocode in Algorithm 1.

4.2. Implementation

With the theory above in place, we now describe some im-
portant implementation details of our learning algorithm.

Algorithm 1 Algorithm for computing an estimate of
% logpe(y | x). This estimate is unbiased in the limit
of infinitely many samples &, but will be biased for a finite
number of samples due to variance in the estimate of the
partition function.
SampleGradient(x, y, 0, ¢, k)
> k is the number of samples to take
Z <+ 0;9 < 0 > Zis the total importance mass of all
samples, 7 is the gradient
fori=1tok do
Sample T' ~ Geometric(e)
Sample yo from wg(- | x)
For 1 <t < T—1: sample y; from Ay (| y—1, )
wo € - ug(y)
Forl <t <T:w;+ € Ag(y | y1—1, )
Z+— 7+ Z?:O Wy
geg+ woaloggz(y\w)
+Zf=1 wy (alog lgag(yo\x)

it alogAe(yswsfl,x)+alogAe(y|yt71,x>)_

s=1 00 o060
end for
g
Output Z

At a high level, we can just use Algorithm 1 to compute
estimates of the gradient and then apply an online learning
algorithm such as ADAGRAD (Duchi et al., 2011) to iden-
tify a good choice of . Since the log-likelihood is a non-
convex function of 6, the initialization is important. We
make the following (weak) assumption:

Assumption 4.3. The chains ug and Agy are controlled by
disjoint coordinates of 0, and for any setting of ug there is
a corresponding choice of Ay that leaves ug invariant (i.e.,
Agug = uyp).

In practice, Assumption 4.3 is easy to satisfy. For in-
stance, suppose that ¢ : Y — R? is a feature func-
tion, § = [0y 61] € R%*9 are the features controlling
w and A, and uyp, is made tractable by zeroing some fea-
tures out: ug,(y) o< exp([fo Og—a,] " d(y)). Also sup-
pose that Ay, is a Gibbs sampler that uses all the features:
Ag,(y | v') o< exp(8] ¢(ys,v".;)), where i is a randomly
chosen coordinate of y. Then, we can satisfy Assump-
tion 4.3 by setting 6, = [0 6d,d0].

Under Assumption 4.3, we can initialize 6 by first training
u in isolation (which is a convex problem if uy parameter-
izes an exponential family), then initializing A to leave u
invariant; this guarantees that the initial log-likelihood is
what we would have obtained by just using u by itself. We
found this to work well empirically.

As another note, Algorithm 1 naively looks like it takes
O(T?) time to compute the gradient for each sample, due
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Figure 3. Generated sequence of keyboard gestures for the word
banana. The input z is a sequence of characters (the recorded key
presses), and the output y is the intended word. Most characters
in x are incidental and do not correspond to any character in y;
this is reflected by the (unobserved) alignment z.

to the nested sum. However, most terms are of the form
wtw; by grouping them for a fixed s we
can compute the sum in O(T') time, leading to expected
runtime O (%) for Algorithm 1 (since E[T" + 1] = 2).

5. Experiments

We validated our method on two challenging inference
tasks. These tasks are difficult due to the importance of
high-arity factors; local information is insufficient to even
identify high-probability regions of the space.

Inferring Words from Keyboard Gestures We first
considered the task of inferring words from keyboard ges-
tures. We generated the data by sampling words from the
New York Times corpus (Sandhaus, 2008). For each word,
we used a time series model to synthetically generate fin-
ger gestures for the word. A typical instantiation of this
process is given in Figure 3. The learning task is to dis-
criminatively infer the intended word y given the sequence
of keys x that the finger was over (for instance, predicting
banana from bdsadbnnnfaassjjj). In our model,
we posit a latent alignment z between key presses and in-
tended letter. Given an input z of length [, the alignment 2
also has length [; each z; is either ‘¢’ (z; starts an output
letter ¢), ‘~¢’ (x; continues an output letter c), or ‘#’ (x; is
unaligned); see Figure 3 for an example. Note that y is a
deterministic function of z.

The base model uy consists of indicator features on (z;, z; ),
(x4, 2i-1,2i), and (z;,2,-1,2). The full Ay is a Gibbs
sampler in a model where we include the following features
in addition to those above:

e indicator features on (x;, ¥;, Yi—1)

e indicator of y being in the dictionary, as well as log of
word frequency (conditioned on being in the dictionary)

e for each ¢, indicator of y;.; matching a prefix of a word
in the dictionary

We compared three approaches:

e Our approach (Doeblin sampling)

e Regular Gibbs sampling, initialized by setting z; = x;
for all 7 (basic-Gibbs)

e Gibbs sampling initialized from ug (ug-Gibbs)

At test time, all three of these methods are almost identi-
cal: they all initialize from some distribution, then make
a certain number of Gibbs samples. For basic-Gibbs and
uy-Gibbs, this is always a fixed number of steps T, while
for Doeblin sampling the number of steps is a geometric
distribution with mean 7".

The main difference is in how the methods are trained. Our
method is trained using the ideas in Section 4; for the other
two methods, we train by approximating the gradient:

VIOgPO(y | {E) = Eéwpg(z\x,y) [¢(y» 27 .’t)]

- E@,2~Pe(y,ZIw) [¢(g’ Z, I)],

where ¢(y, z, z) is the feature function and py is the sta-
tionary distribution of Ay. For the second term, we use
MCMC samples from Ay to approximate py(y,z | ).
For the first term, we could take the subset of samples
where y = y, but this is problematic if no such samples
exist. Instead, we reweight all samples with § # y by
exp(—(D+1)), where D is the edit distance between y and
3. We use the same reweighting approach for the Doeblin
sampler, using this as the importance weight rather than us-
ing Ag(y | y¢—1) as in Algorithm 1.

To provide a fair comparison of the methods, we set € in the
Doeblin sampler to the inverse of the number of transitions
T, so that the expected number of transitions of all algo-
rithms is the same. We also devoted the first half of each
chain to burn-in.

All algorithms are trained with AdaGrad (Duchi et al.,
2011) with 16 independent chains run for each example.
We measure word-level accuracy by computing the frac-
tion of (non-burn-in) samples whose output y is correct.

The results are reported in Figure 4. Overall, our Doe-
blin sampler outperforms wug-Gibbs by a significant mar-
gin, which in turn outperforms basic-Gibbs. Interestingly,
while the accuracy of our method continues to improve
with more training time, uy-Gibbs quickly asymptotes and
then slightly decreases, even for training accuracy.

What is happening to ug-Gibbs? Since the inference prob-
lem in this task is hard, the samples provide a poor gradient
approximation. As a result, optimization methods that take
the approximation at face value may not converge to even
a local optimum. This phenomenon has already been stud-
ied in other contexts, for instance by Kulesza and Pereira
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Figure 4. Plots of word-level (left) and character-level (right) accuracy. The first panel gives the performance of all 3 methods (Doeblin
chains, smart restarts, and simple Gibbs) for a computational budget of 20 transitions per example. The second and third panels give the
performance of Doeblin chains and smart restarts, respectively, for increasing computational budgets (20, 50, and 100 transitions).

(2007) and Huang et al. (2012).

In contrast, our method directly optimizes the log-
likelihood of the data under the distribution 7y, so that ac-
curacy continues to increase with more passes through the
training data. This demonstrates that the MCMC samples
do provide enough signal to train from, but that naively
plugging them into a method designed for exact inference
will fail to exploit that signal.

Inferring DNF Formulas We next study the use of our
staged Doeblin chain construction as a tool for hierarchical
initialization. We ignore learning for now, instead treat-
ing MCMC as a stochastic search algorithm. Our task
of interest is to infer a DNF formula f from its input-
output behavior. This is an important subroutine in loop
invariant synthesis, where MCMC methods have recently
shown great promise (Gulwani and Jojic, 2007; Sharma and
Aiken, 2014).

Concretely, the input  might look like this:

f(1,2,3) = True

f(1,4,4) = True

£(0,1,0) = False
£(0,2,2) = True

Our task is to reconstruct f; in this case, f(x1,z2,z3) =
[:El #* 0] \Y [LL'Q = .%'3]

More formally, we consider DNF formulae with linear in-
equality predicates: f(x) Vi, AL =1 [aTx < byl,

where a;j, x € Z% and b;; € Z. The formula f maps input
vectors to {True,False}. Given a collection of example
inputs and outputs, our goal is to find an f consistent with
all examples. Our evaluation metric is the time to find such

a formula.

The search space for this problem is extremely large. Even
if we set n = m = 3 and restrict our search to a;; €
{-1,0,1}>,b € {—1,0, 1}, the total number of candidate

formulae is still (36)3X3 ~ 5.8 x 10%°,

We consider three MCMC methods: no restarts (0-stage),
uniformly random restarts (1-stage), and a staged method
(2-stage) as in Section 3.1. All base chains perform
Metropolis-Hastings using proposals that edit individual
atoms (e.g., [aiTjw < b;;]), either by changing a single entry
of [a;; b;;] or by changing all entries of [a;; b;;] at once.
For the staged method, we initialize uniformly at random,
then take Geometric(0.04) transitions based on a simpli-
fied cost function, then take Geometric(0.0002) steps with
the full cost (this is the staged Doeblin chain in Figure 2).

The full cost function is I(f), the number of examples f
errs on. We stop the Markov chain when it finds a formula
with I(f) = 0. The simplified cost function decomposes
over the disjuncts: for each disjunct d(z), if f(z) = False
while d(x) = True, we incur a large cost (since in order for
f(z) to be false, all disjuncts comprising f(x) must also be
false). If f(z) = True while d(x) = False, then we incur
a smaller cost. If f(x) = d(z) then we incur no cost.

We used all three methods as a subroutine in verifying
properties of C programs; each such verification requires
solving many instances of DNF formula inference. Using
the staged method we are able to obtain a 30% speedup
over uniformly random restarts and a 50x improvement
over no restarts, as shown in Table 1.
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Table 1. Comparison of 3 different MCMC algorithms. 0-stage uses no restarts, 1-stage uses random restarts, and 2-stage uses random
restarts followed by a short period of MH with a simplified cost function. The table gives mean time and standard error (in seconds)
taken to verify 5 different C programs, for 1000 trials. Each verification requires inferring many DNF formulae as a sub-routine.

Task figl cegar? nested tacas06 hard
0-stage 26+1.0 320+9.3 120£ 7.0 > 600 > 600
I-stage | 0.074 £0.001 | 0.414+0.01 | 24+0.10 | 6.8+£0.15 | 52+ 1.5
2-stage | 0.055+0.005 | 0.33 £0.007 | 2.3+0.12 | 4.6 £0.12 | 31 +0.90
6. Discussion distribution.

We have proposed a model family based on strong Doe-
blin Markov chains, which guarantee fast mixing. Our
construction allows us to simultaneously leverage a sim-
ple, tractable model (ug) that provides coverage together
with a complex, accurate model (Ay) that provides preci-
sion. As such, we sidestep a typical dilemma—whether to
use a simple model with exact inference, or to deal with the
consequences of approximate inference in a more complex
model.

While our approach works well in practice, there are still
some outstanding issues. One is the non-convexity of the
learning objective, which makes the procedure dependent
on initialization. Another issue is that the gradients re-
turned by Algorithm 1 can be large, heterogeneous, and
high-variance. The adaptive nature of ADAGRAD allevi-
ates this somewhat, but it would still be ideal to have a sam-
pling procedure that had lower variance than Algorithm 1.

Though Gibbs sampling is the de facto method for many
practitioners, there are also many more sophisticated ap-
proaches to MCMC (Green, 1995; Earl and Deem, 2005).
Since our framework is orthogonal to the particular choice
of transition kernel, it would be interesting to apply our
method in these contexts.

Finally, we would like to further explore the staged con-
struction from Section 3.1. As the initial results on DNF
formula synthesis are promising, it would be interesting to
apply the construction to high-dimensional feature spaces
as well as rich, multi-level hierarchies. We believe this
might be a promising approach for extremely rich models
in which a single level of re-initialization is insufficient to
capture the complexity of the cost landscape.

Related work. Our learning algorithm is reminiscent of
policy gradient algorithms in reinforcement learning (Sut-
ton et al., 2000), as well as Searn, which tries to learn an
optimal search policy for structured prediction (Daumé III
et al., 2009); see also Shi et al. (2015), who apply rein-
forcement learning in the context of MCMC. Our staged
construction is also similar in spirit to path sampling (Gel-
man and Meng, 1998), as it uses a multi-stage approach to
smoothly transition from a very simple to a very complex

Our staged Doeblin construction belongs to the family of
coarse-to-fine inference methods, which operate on pro-
gressively more complex models (Viola and Jones, 2004;
Shen et al., 2004; Collins and Koo, 2005; Charniak et al.,
2006; Carreras et al., 2008; Gu et al., 2009; Weiss et al.,
2010; Sapp et al., 2010; Petrov, 2011; Yadollahpour et al.,
2013).

On the theoretical front, we make use of the well-developed
theory of strong Doeblin chains, often also referred to
with the terms minorization or regeneration time (Doe-
blin, 1940; Roberts and Tweedie, 1999; Meyn and Tweedie,
1994; Athreya and Ney, 1978). The strong Doeblin prop-
erty is typically used to study convergence of continuous-
space Markov chains, but Rosenthal (1995) has used it
to analyze Gibbs sampling, and several authors have pro-
vided algorithms for sampling exactly from arbitrary strong
Doeblin chains (Propp and Wilson, 1996; Corcoran and
Tweedie, 1998; Murdoch and Green, 1998). We are the
first to use strong Doeblin properties to construct model
families and learn them from data.

At a high level, our idea is to identify a family of
models for which an approximate inference algorithm is
known to work well, thereby constructing a computation-
ally tractable model family that is nevertheless more ex-
pressive than typical tractable families such as low-tree-
width graphical models. We think this general program is
very interesting, and could be applied to other inference
algorithms as well, thus solidfying the link between statis-
tical theory and practical reality.
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A. Proofs

Proof of Proposition 3.1. We will in fact show that, for all & > 1, A\ (A) = (1 — €)Ax(A), with the same eigenvector

for both matrices. In other words, while the stationary distribution of A is different from A, all other eigenvectors are
unchanged.

Let wy, be the eigenvector of A corresponding to . First note that 17 wj, = 0. This is because
17T Awy, = 1T wy, (8)
since A is stochastic, and
1T Awg, = A\l Twy 9)
since wy, is an eigenvector of A. Since Ay # 1, this implies that 1 Twj, = 0.
Now we have

Awy, = (1 — €) Awy, + eul Twy,

= (1 — €) \ywg,
which proves that A, (A) = (1 —€)Ax(A). In particular, Ay (A) = (1 —€)Az(A) < 1—e. The mixing time of A is T /\1 a°
—A2
and is therefore upper bounded by % which completes the proof. O
Proof of Proposition 3.2. We can verify algebraically that A7 = 7, as follows:
Ar = (1 — e)AR +eul "7
=e(l-e) Al — (1 —e)A)u+eu
=e[l-eAI-(1-eA) " +1]u
=e[(l-aA+(T -1 —-)A)]T—-1—-e)A)  u
=e(l-—(1-e)A)tu
= 7?’
so that 7 is indeed the stationary distribution of A. O
Proof of Proposition 3.5. From the characterization of 7 in Proposition 3.2, we know that 7 is equal to
eZ(l — )l Alu. (10)
j=0

The rest of the proof consists of determining some useful properties of d (7). The most important (and the motivation for
defining d in the first place) is given in the following lemma, which we prove separately:

Lemma A.1. If 7 is the stationary distribution of A and A satisfies detailed balance, then d.(An’) < Ay(A)d (7).
The other important property of d (7’) is convexity: d, (wn’ + (1 — w)7") < wdy(7") + (1 — w)d, (7", which follows
directly from the characterization of d(7’) as a Mahalanobis distance.

Putting these two properties together, we have

de(7) <€y (1 —€)d,(AMn)

s

Il
=]

J

e

Il
=]

€Y (1—€e)Xa(A)Ydy(u)

1-— (1 — 6))\2(14)

T (A ()

dr(u)

IN
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which completes the proof. O

Proof of Lemma A.1. Recall we want to show that d.(An’) < Aa(A)d.(7'). To see this, first define S =
diag(m)~1/2 A diag(m)'/2, which is symmetric by the detailed balance condition, and satisfies Az (S) = Aj,(A) by similar-
ity. Furthermore, the top eigenvector of S is 1" diag(7)'/2. Putting these together, we have
dr(An') = || diag(m)~"/*(m — An')|5

= || diag(m) /2 A(x — )2

= || diag(m) ~/?(m — ')z

< Ao(8)|| diag(m) "2 (m — ') |5

= X2(8)dx(m)

= Ao (A)dr (7).
(

The inequality step ||.S diag(7) ~'/2(m — 7') |2 < Ao(S)|| diag(n)~/2(m — 7')||2 follows because diag(7)~'/?(7 — 7’)
is orthogonal to the top eigenvector 1" diag(7)'/? of S. O

Proof of Proposition 3.4. For any value of e, the stationary distribution 7. of (1 —€)A+eul ' can be obtained by applying
A a Geometric(e)-distributed number of times to u (by Proposition 3.2). For €2 < ¢, it therefore suffices to construct
a random variable F' > 0 such that if s ~ F and ¢ ~ Geometric(e;) then s + ¢t ~ Geometric(ez); if we can do this,
then we can let B be the matrix that applies A an F-distributed number of times, and we would have B7., = 7,;
but B would clearly have stationary distribution 7, and so Lemma 3.3 would give KL (7 || 7e,) < KL (7 || 7,) and
KL (7, || m) < KL (7, || ), which is the desired result.

To construct the desired F', we use the fact that addition of random variables corresponds to convolution of the probability
mass functions, and furthermore represent the probability mass functions as formal power series; in particular, we let

(o)
— S Plt=n|t~ Fla", (11
n=0
and similarly
ge(z) = Z Pt = n | t ~ Geometric(e)]z"
n=0
Z e(l—e)"
n=0
B €
1—(1—e)az
We want f(z)g., (z) to equal g, (x), so we take
e, (%)
Ja) = 22
= @)
_el-(1-a)z
Cal—(1—-e)x
€ > _ n
- i <1+Z (1-e)"—(1-e)"'1-ea)|z )
n=1
€2 = n—1 n
:61<1+Z(1—62) (61—62){,6 )
n=1

From this we see that the random variable F' with probability function

L : n=0

P[t:n|t~F]:{ 62(1—62)51—1(61—52) C n>0 (12)

€1
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satisfies the required property that F' + Geometric(e;) = Geometric(ez). Note that the condition e < € is necessary
here so that all of the probability masses are positive in the above expression.

We can also prove the result purely algebraically. Motivated by the above construction, we define

-1

B=ecI-(1-e)A) " al —(1-e)A)™]
2T+ (a1 — ) A — (1 —e)A) 7Y

€1

By construction we have Bm,, = 7,, but Taylor expanding the second expression for B shows that we can write it as
a (infinite) convex combination of non-negative powers of A, and hence that B has stationary distribution 7. This again
yields the desired result by Lemma 3.3. O

Proof of Theorem 3.6. We use an equivalent characterization of the strong Doeblin parameter as the quantity T'(4) =
>, infy A(y | y'). In the context of the Markov chain M, this yields

F(Mb) = Z inf P[Zb,yb | z07y0]

(20.0) (20,90)

= Z (mf ZPTG—T|y0]XP[vayb|Ta—T]

Z0 yo
(26,Yp) ’

Z Zlnf]P)Ta—T‘yo] X Plzy, yp | Ta = 7]

(vayb)T a

inf P[r, = Pz, o =
;1;10 [T = 7 | o] Z (26, 96 | Ta = 7]

(2b,yp)

b
= ZianP[Ta =7 | yo]
=

= Ya,b-

Finally, by Proposition 3.1, the spectral gap of M? is at least v, 5, hence the spectral gap of M is at least %'ya’b, which
proves the theorem. O

Proof of Corollary 3.7. Note that the time to transition from i to i 4+ 1 is Geometric(d;)- distributed Suppose we start

from an arbitrary j € {0,...,k — 1}. Then the time ¢’ to get to k — 1 is distributed as Z % Geometric(d;). t' has

k—2 1 1 k— 2 1-46;
mean Zi:j 5 < 5 and variance Z 5 < K

. In particular, with probablhty =, t' lies between 0 and

Ok —
t” being at least w=—, t" + t’ - k— is also Geometric(dy_1)-distributed. But # is at least [ +2— 5. with probablhty

at least (1 — 5k_1)2/ Ok—1 > (smce Op—1 < 2) Hence independently of j, " + t' is, with probablhty at least 16,
distributed according to LTJ + Geometric(dg—1). But ¢’ + ¢ = 7 by construction, and so we need only compute

L 2 J Now, consider the time t” to get from k — 1 to 0; this is Geometric(dx_1)-distributed, and conditioned on

the probability that 7 < [ﬁj but this is just the probability that the geometric distribution is less than —~—, which is
1 — (1 = 0p_q)/0k1 > 1 — e 1. Therefore, y(to,t) > 155 L 6 expanding the definitions of to andt we have

that v2/5, 1 ],[3/6k_1] 2 - Applying Theorem 3.6 then implies that the spectral gap of M is at leas 78 , to be
shown. O
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Proof of Lemma 4.2. The key idea is to use the identity % = f(z) al%jj(z) in two places. We have

dlogpy(z € S)

po(z € 5) 50 = 5gPo(2 €5)
= /Spe(z)a 10%};9(2) dz
=po(z € S)E. [8105;81;(9(2) z€ S} ,
which completes the lemma. ]

B. Correctness of Importance Sampling Algorithm

In Section 4.1 of the main text, we had a distribution u over ) and a Markov chain A(y; | y:—1) on the same space. We

then built a distribution over Y* &' UrsotT} x YT by sampling T' ~ Geometric(e), yo ~ u, and y; | y;_1 ~ A for

y=1,...,T (weuse pr(yo.7) to represent the distribution over yo.7 given T').

For a given y, we were interested in constructing an importance sampler for (T, yo.7) | yr = y. The following Lemma
establishes the correctness of the importance sampler that was presented. We assume we are interested in computing the
expectation of some function ¢ : J* — R and show that the given importance weights correctly estimate E[g].

Lemma B.1. For a distribution F, suppose that we sample T ~ F and then sample yo.7_1 ~ pr_i. Let w, =

ngt;‘;):ﬂ/l(y | y¢—1). Consider the random variable

T
~ def
9= wiglt you-1,y)- (13)
t=0
Then
IETNFayD:TlePT—l [g] = ETNGeometric(e),yg;Tmsz [Q(T, yO:T)H[yT = y]] . (14)

Proof. We have

IETNFayO:T—lNP[g] = ETNFJJO:T—]"’FT—I

T
Z wtg(ta Yo:t—1, y)]

t=0

]P)[T >t | T ~ F}Eyo:t—l"’pt—l [wtg(t7y0:t—17y)}

M

~+
Il
o

6(1 - E)t]EyO:t—l"‘pt—l [A(y | ytfl)g(tvyO:tflvy)]

-
Il
=]

M

6(1 - E)t]EyO:tNPt [g<t7 yO:t)H[yt = y]]

S
o

T ~Geometric(€),yo.7~pT [g(T7 yO:T)H[yT = Z/]] )

as was to be shown. O



