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Motivation

Goal. Given an (un-normalized) target distribution f ∗(x), p∗(x) = 1
Z f ∗(x),

want to compute normalization constant Z .
Issue. Often computationally intractable, so use some approximation f̂ to f ∗.

variational Bayes, expectation propagation (drop dependencies)

MCMC, sequential Monte Carlo, beam search (use samples)

We will show how to combine advantages of both types of methods.
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Variational vs. Particle Methods

Goal: infer missing characters in r e c e

Particle

Actual Variational

0.5 replace

0.33 replace
r e

0.33 j
0.33 p
0.33 t

0.33 l
0.33 o
0.33 r

0.66 a
0.33 i c e

0.5 retrace

0.33 retrace
0.33 rejoice
0.01 . . .

Particles provide precision but lack coverage, while variational inference
lacks precision.
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Our Proposal

Define approximations over intermediate regions.

variational

intermediate

particle

re ??? ce

re ??ace re ??ice

replace retrace

rejoice

Goal. Stitch together approximations at multiple levels to simultaneously obtain
precision (from lower levels) and coverage (from higher levels).
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Stitching Together Models

Question. How to combine the different models?

re ??? ce

re ??ace re ??ice

replace retrace rejoice

⇓

Answer. Just use most precise model available at each point (relies on nested
structure, e.g. the regions form a hierarchical decomposition).

J. Steinhardt & P. Liang (Stanford) Filtering with Abstract Particles May 1, 2013 5 / 12



Stitching Together Models

Question. How to combine the different models?

re ??? ce

re ??ace re ??ice

replace retrace rejoice

⇓

Answer. Just use most precise model available at each point (relies on nested
structure, e.g. the regions form a hierarchical decomposition).

J. Steinhardt & P. Liang (Stanford) Filtering with Abstract Particles May 1, 2013 5 / 12



Generalizing the Construction

Let X be some space. Suppose we have a hierarchical decomposition A⊆ 2X

together with an approximation f̂a to f ∗ defined on each region a ∈ A.

If a = {x0} is a singleton set, can have
f̂a(x0) = f ∗(x0).

If a = X , will need to drop most of the
dependencies.

For intermediate values of a (for instance,
fixing the values of certain variables) can
keep some subset of the dependencies.

r e ? ? ? c e

r e ? ? a c e

r e ? l a c e

r e p l a c e

Set f̂ (x)
def
= f̂a(x), where a is the smallest region containing x .

Can think of each region a ∈ A as an abstract particle.
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Inference

If f̂ is constructed as in the previous slide, then we can compute normalization
constant Z as long as we can compute ∑x∈b f̂a(x) for all regions b ⊆ a.

Proof by picture:

re ??? ce

re ??ace re ??ice

replace retrace rejoice

⇓

−
+
−
+

=
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A Family of Approximations

A hierarchical decomposition A leads to an approximation f̂ .

We would like to define a family of approximations and choose the best one.

Key idea. Every subset B of a hierarchical decomposition A is itself a
hierarchical decomposition.

Can let A have large cardinality and search for a small subset B that
yields a good approximation.

Example:

A :

B :

re ??? ce

re ??ace re ??ice

re ??ice

replace

replace

retrace

retrace

rejoice

rejoice
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Search Strategy

Suppose that A has size 1000 and we want a subset of size 100.(1000
100

)
possibilities; far too many!

Solution. “Abstract beam search.” Iteratively refine and prune a candidate
decomposition.

Refine: split each region into smaller regions (to gain precision).
Prune: greedily keep a small set of regions that yield a good
approximation (so we can refine again).

???

?c?

ab?

???

??a ??b ?? c

?ca

aba

?cb

abb

?cc

abc

Refine(???)

Refine(?c?)

Refine(ab?)

Applies naturally to filtering tasks (refine to go to next time step, prune to save
resources).
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Summary (so far)

Interpolate between individual particles and full variational
approximations by using region-specific approximations.

Stitch together approximations in different regions via a hierarchical
decomposition.

Prune and refine the decomposition to find a good approximation.

Related to split variational inference (Bouchard & Zoeter, 2009).

Also to a growing family of coarse-to-fine inference methods (Petrov et
al., 2006; Weiss & Taskar, 2010; many others).
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Experiments

0.376
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Experiments

n-gram text reconstruction (n = 8)

0.0 0.5 1.0 1.5 2.0
language model queries (billions)

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

ac
cu

ra
cy

abstract (greedy)
concrete (smc)
concrete (beam)

J. Steinhardt & P. Liang (Stanford) Filtering with Abstract Particles May 1, 2013 11 / 12



Experiments

Factorial HMM (100 states, 15 factors)
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Conclusion

Abstract particles combine the advantages of variational and particle
inference.

Provide a framework for reasoning about the optimal representation for
approximate inference.

Thanks!
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