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Motivation

Goal. Given an (un-normalized) target distribution *(x), p*(x) = Zf*(x),
want to compute normalization constant Z. A
Issue. Often computationally intractable, so use some approximation f to f*.
@ variational Bayes, expectation propagation (drop dependencies)
@ MCMC, sequential Monte Carlo, beam search (use samples)

We will show how to combine advantages of both types of methods.
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Variational vs. Particle Methods

Goal: infer missing charactersin r e _ _ _ c e
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Variational vs. Particle Methods

Goal: infer missing charactersin r e _ _ _ c e
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Variational vs. Particle Methods

Goal: infer missing charactersin r e _ _ _ c e
Particle Actual Variational
0.5 replace | 0.33 replace B —
. j .
0.5 retrace | 0.33 retrace | re| 033 p || 0330
0.33 t 033 r

0.33 rejoice
0.01

0.66 a
0.33 i

ce

Particles provide precision but lack coverage, while variational inference

lacks precision.
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Our Proposal

Define approximations over intermediate regions.

variational
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|
Our Proposal

Define approximations over intermediate regions.

variational

intermediate

particle Ifep/ac4 |retrac4 |rejO/csi

Goal. Stitch together approximations at multiple levels to simultaneously obtain
precision (from lower levels) and coverage (from higher levels).
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Stitching Together Models

Question. How to combine the different models?
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Stitching Together Models

Question. How to combine the different models?
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Answer. Just use most precise model available at each point (relies on nested
structure, e.g. the regions form a hierarchical decomposition).
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|
Generalizing the Construction

Let X be some space. Suppose we have a hierarchical decomposition A C 2X
together with an approximation f, to f* defined on each region a € A.
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e If a= {xo} is a singleton set, can have 0(@'6 ) e'e‘e
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e If a= {xo} is a singleton set, can have G(e'e ) e'e‘e

,f\a(Xo) = f*(Xo).

@ If a= X, will need to drop most of the Qe's 35'@‘@
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Set (x) &ef f.(x), where ais the smallest region containing x.
Can think of each region a € A as an abstract particle.
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Inference

If 7 is constructed as in the previous slide, then we can compute normalization
constant Z as long as we can compute Y., f2(x) for all regions b C a.

Proof by picture:
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Inference

If ¥ is constructed as in the previous slide, then we can compute normalization
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If ¥ is constructed as in the previous slide, then we can compute normalization
constant Z as long as we can compute Y., fa(x) for all regions b C a.

Proof by picture:

[ rexekce ] I

/ \ — I e

C rexxace  rexsice + I e

/. \ e

|replace | | retrace | | rejoice | + [ ]

I e . I S
Filtering with Abstract Particles May 1,2013  7/12



A Family of Approximations

A hierarchical decomposition A leads to an approximation f.

We would like to define a family of approximations and choose the best one.

Key idea. Every subset B of a hierarchical decomposition A is itself a
hierarchical decomposition.

@ Can let A have large cardinality and search for a small subset B that
yields a good approximation.

Example:
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Search Strategy

Suppose that A has size 1000 and we want a subset of size 100.

(1100000) possibilities; far too many!

Solution. “Abstract beam search.” lteratively refine and prune a candidate
decomposition.

@ Refine: split each region into smaller regions (to gain precision).

@ Prune: greedily keep a small set of regions that yield a good
approximation (so we can refine again).

@ Refine (% *)
5

@ Refine(xcx)
P
@ Refine(abx)
>

Applies naturally to filtering tasks (refine to go to next time step, prune to save
resources).
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-
Summary (so far)

@ Interpolate between individual particles and full variational
approximations by using region-specific approximations.

@ Stitch together approximations in different regions via a hierarchical
decomposition.

@ Prune and refine the decomposition to find a good approximation.

@ Related to split variational inference (Bouchard & Zoeter, 2009).

@ Also to a growing family of coarse-to-fine inference methods (Petrov et
al., 2006; Weiss & Taskar, 2010; many others).
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Experiments
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Experiments
n-gram text reconstruction (n = 8)
02 ‘ :
01,‘}7.:'::.-‘ '--‘&/_’//>_>_,_ __________ |
S
0.0t & ]
5‘ —0.1F ,;‘ R
E +
5 02} ; 1
Q +
(&) i
© —0.3 >f i
—04}t J
! —f— abstract (greedy)
—0.5} -{- concrete (smc) |4
+ --{-- concrete (beam)
045 05 1.0 15 2.0
language model queries (billions)
11/12

May 1,2013

Filtering with Abstract Particles

J. Steinhardt & P. Liang (Stanford)



Experiments
Factorial HMM (100 states, 15 factors)
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N
Conclusion

@ Abstract particles combine the advantages of variational and particle
inference.

@ Provide a framework for reasoning about the optimal representation for
approximate inference.

@ Thanks!
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