Learning from Untrusted Data

Moses Charikar, Jacob Steinhardt, Gregory Valiant

Symposium on the Theory of Computing June 19, 2017

Motivation: data poisoning attacks:

(Icon credit: Annie Lin)

Motivation: **data poisoning** attacks:

Question: what concepts can be learned in the presence of arbitrarily corrupted data?

(Icon credit: Annie Lin)

Related Work

• 60 years of work on robust statistics...

PCA:

• XCM '10, CLMW '11, CSPW '11

Mean estimation:

• LRV '16, DKKLMS '16, DKKLMS '17, L '17, DBS '17, **S**CV '17

Regression:

• NTN '11, NT '13, CCM '13, BJK '15

Classification:

• FHKP '09, GR '09, KLS '09, ABL '14

Semi-random graphs:

• FK '01, C '07, MMV '12, **S** '17

Other:

• HM '13, C '14, C '16, DKS '16, **S**CV '16

Observe n points x_1, \ldots, x_n

Observe n points x_1, \ldots, x_n

Unknown subset of αn points drawn **i.i.d. from** p^*

Observe n points x_1, \ldots, x_n

Unknown subset of αn points drawn **i.i.d.** from p^*

Remaining $(1 - \alpha)n$ points are **arbitrary**

Observe n points x_1, \ldots, x_n

Unknown subset of αn points drawn **i.i.d.** from p^*

Remaining $(1 - \alpha)n$ points are **arbitrary**

Goal: estimate parameter of interest $\theta(p^*)$

- assuming $p^* \in \mathcal{P}$ (e.g. bounded moments)
- $\theta(p^*)$ could be mean, best fit line, ranking, etc.

Observe n points x_1, \ldots, x_n

Unknown subset of αn points drawn **i.i.d.** from p^*

Remaining $(1 - \alpha)n$ points are **arbitrary**

Goal: estimate parameter of interest $\theta(p^*)$

- assuming $p^* \in \mathcal{P}$ (e.g. bounded moments)
- $\theta(p^*)$ could be mean, best fit line, ranking, etc.

New regime: $\alpha \ll 1$

If e.g. $\alpha = \frac{1}{3}$, estimation seems impossible:

If e.g. $\alpha = \frac{1}{3}$, estimation seems impossible:

If e.g. $\alpha = \frac{1}{3}$, estimation seems impossible:

But can narrow down to 3 possibilities!

If e.g. $\alpha = \frac{1}{3}$, estimation seems impossible:

But can narrow down to 3 possibilities!

List-decodable learning [Balcan, Blum, Vempala '08]

• output $\mathcal{O}(1/\alpha)$ answers, one of which is approximately correct

If e.g. $\alpha = \frac{1}{3}$, estimation seems impossible:

But can narrow down to 3 possibilities!

List-decodable learning [Balcan, Blum, Vempala '08]

- output $\mathcal{O}(1/\alpha)$ answers, one of which is approximately correct

Semi-verified learning

 \bullet observe $\mathcal{O}(1)$ verified points from p^*

If e.g. $\alpha = \frac{1}{3}$, estimation seems impossible:

But can narrow down to 3 possibilities!

List-decodable learning [Balcan, Blum, Vempala '08]

- output $\mathcal{O}(1/\alpha)$ answers, one of which is approximately correct

Semi-verified learning

 \bullet observe $\mathcal{O}(1)$ verified points from p^*

Why Care?

Practical problem: data poisoning attacks

• How can we build learning algorithms that are **provably secure** to manipulation?

Why Care?

Practical problem: data poisoning attacks

• How can we build learning algorithms that are **provably secure** to manipulation?

Fundamental problem in robust statistics

• What can be learned in presence of arbitrary outliers?

Why Care?

Practical problem: data poisoning attacks

• How can we build learning algorithms that are **provably secure** to manipulation?

Fundamental problem in robust statistics

• What can be learned in presence of arbitrary outliers?

Agnostic learning of mixtures

• When is it possible to learn about one mixture component, with **no assumptions** about the other components?

Observed functions: f_1, \ldots, f_n

Want to minimize unknown target function: \bar{f}

Observed functions: f_1, \ldots, f_n

Want to minimize unknown target function: \bar{f}

Key quantity: **spectral norm bound** on a subset *I*:

$$\frac{1}{\sqrt{|I|}} \max_{w \in \mathbb{R}^d} \| [\nabla f_i(w) - \nabla \bar{f}(w)]_{i \in I} \|_{\text{op}} \le S.$$

Observed functions: f_1, \ldots, f_n

Want to minimize unknown target function: \bar{f}

Key quantity: **spectral norm bound** on a subset *I*:

$$\frac{1}{\sqrt{|I|}} \max_{w \in \mathbb{R}^d} \| [\nabla f_i(w) - \nabla \bar{f}(w)]_{i \in I} \|_{\text{op}} \le S.$$

Meta-Theorem

Given a spectral norm bound on an unknown subset of αn functions, learning is possible:

- in the semi-verified model (for convex f_i)
- in the list-decodable model (for strongly convex f_i)

Observed functions: f_1, \ldots, f_n

Want to minimize unknown target function: \overline{f}

Key quantity: **spectral norm bound** on a subset *I*:

$$\frac{1}{\sqrt{|I|}} \max_{w \in \mathbb{R}^d} \| [\nabla f_i(w) - \nabla \bar{f}(w)]_{i \in I} \|_{\text{op}} \le S.$$

Meta-Theorem

Given a spectral norm bound on an unknown subset of αn functions, learning is possible:

- in the semi-verified model (for convex f_i)
- in the list-decodable model (for strongly convex f_i)

All results direct corollaries of meta-theorem!

Setting: distribution p^* on \mathbb{R}^d with mean μ and bounded 1st moments: $\mathbb{E}_{p^*}[|\langle x - \mu, v \rangle|] \leq \sigma ||v||_2 \text{ for all } v \in \mathbb{R}^d.$

Setting: distribution p^* on \mathbb{R}^d with mean μ and bounded 1st moments: $\mathbb{E}_{p^*}[|\langle x - \mu, v \rangle|] \le \sigma ||v||_2 \text{ for all } v \in \mathbb{R}^d.$

Observe αn samples from p^* and $(1 - \alpha)n$ arbitrary points, and want to estimate μ .

Setting: distribution p^* on \mathbb{R}^d with mean μ and bounded 1st moments: $\mathbb{E}_{p^*}[|\langle x-\mu,v\rangle|] \leq \sigma ||v||_2$ for all $v \in \mathbb{R}^d$.

Observe αn samples from p^* and $(1 - \alpha)n$ arbitrary points, and want to estimate μ .

Theorem (Mean Estimation) –

If $\alpha n \geq d$, it is possible to output estimates $\hat{\mu}_1, \ldots, \hat{\mu}_m$ of the mean μ such that

- $m \leq 2/\alpha$, and
- $\min_{j=1}^{m} \|\hat{\mu}_j \mu\|_2 = \tilde{\mathcal{O}}(\sigma/\sqrt{\alpha})$ w.h.p.

Setting: distribution p^* on \mathbb{R}^d with mean μ and bounded 1st moments: $\mathbb{E}_{p^*}[|\langle x-\mu,v\rangle|] \leq \sigma ||v||_2$ for all $v \in \mathbb{R}^d$.

Observe αn samples from p^* and $(1 - \alpha)n$ arbitrary points, and want to estimate μ .

Theorem (Mean Estimation)

If $\alpha n \geq d$, it is possible to output estimates $\hat{\mu}_1, \ldots, \hat{\mu}_m$ of the mean μ such that

- $m \leq 2/\alpha$, and
- $\min_{j=1}^{m} \|\hat{\mu}_j \mu\|_2 = \tilde{\mathcal{O}}(\sigma/\sqrt{\alpha})$ w.h.p.

Alternately, it is possible to output an estimate $\hat{\mu}$ given a single verified point from p^* .

Comparisons

Mean estimation:

Comparisons

Mean estimation:

	Bound	Regime	Assumption	Samples
LRV '16	$\sigma\sqrt{1-\alpha}$	$\alpha > 1 - c$	4th moments	d
DKKLMS '16	$\sigma(1-\alpha)$	$\alpha > 1 - c$	sub-Gaussian	d^3
CSV '17	σ/\sqrt{lpha}	$\alpha > 0$	1st moments	d

Estimating mixtures:

	Separation	Robust?
AM '05	$\sigma(k+1/\sqrt{\alpha})$	no
KK '10	σk	no
AS '12	$\sigma\sqrt{k}$	no
CSV '17	σ/\sqrt{lpha}	yes

Other Results

Stochastic Block Model: (sparse regime: cf. GV '14, LLV '15, RT '15, RV '16)

	Average Degree	Robust?
GV '14	$1/lpha^4$	no
AS '15	$1/\alpha^2$	no
CSV '17	$1/lpha^3$	yes

Other Results

Stochastic Block Model: (sparse regime: cf. GV '14, LLV '15, RT '15, RV '16)

	Average Degree	Robust?
GV '14	$1/lpha^4$	no
AS '15	$1/\alpha^2$	no
CSV '17	$1/lpha^3$	yes

Others:

- discrete product distributions
- exponential families
- ranking

Recall goal: given n points x_1, \ldots, x_n , αn drawn from p^* , estimate mean μ of p^*

Recall goal: given n points x_1, \ldots, x_n , αn drawn from p^* , estimate mean μ of p^*

Key tension: balance **adversarial** and **statistical** error

Recall goal: given n points x_1, \ldots, x_n , αn drawn from p^* , estimate mean μ of p^*

Key tension: balance **adversarial** and **statistical** error

Recall goal: given n points x_1, \ldots, x_n , αn drawn from p^* , estimate mean μ of p^*

Key tension: balance **adversarial** and **statistical** error

Recall goal: given n points x_1, \ldots, x_n , αn drawn from p^* , estimate mean μ of p^*

Key tension: balance **adversarial** and **statistical** error

High-level strategy: solve convex optimization problem

- if cost is low, estimation succeeds (spectral norm bound)
- if cost is high, identify and remove **outliers**

Recall goal: given n points x_1, \ldots, x_n , αn drawn from p^* , estimate mean μ of p^*

Key tension: balance **adversarial** and **statistical** error

High-level strategy: solve convex optimization problem

- if cost is low, estimation succeeds (spectral norm bound)
- if cost is high, identify and remove **outliers**

First pass: minimize $\mu \sum_{i=1}^{n} \|x_i - \mu\|_2^2$

First pass: minimize_{μ} $\sum_{i=1}^{n} ||x_i - \mu||_2^2$

Second pass: minimize_{μ_1,\ldots,μ_n} $\sum_{i=1}^n \|x_i - \mu_i\|_2^2$

First pass: minimize_{μ} $\sum_{i=1}^{n} \|x_i - \mu\|_2^2$

Second pass: minimize_{μ_1,\ldots,μ_n} $\sum_{i=1}^n \|x_i - \mu_i\|_2^2$

Final pass: minimize_{μ_1,\ldots,μ_n} $\sum_{i=1}^n ||x_i - \mu_i||_2^2 + \lambda F(\mu_1,\ldots,\mu_n)$

First pass: minimize_{μ} $\sum_{i=1}^{n} ||x_i - \mu||_2^2$

Second pass: minimize_{$\mu_1,...,\mu_n$} $\sum_{i=1}^n \|x_i - \mu_i\|_2^2$

Final pass: minimize_{μ_1,\ldots,μ_n} $\sum_{i=1}^n ||x_i - \mu_i||_2^2 + \lambda F(\mu_1,\ldots,\mu_n)$

Choices for F:

- nuclear norm: error σ/α
- maximum nuclear norm over subsets: error $\sigma/\sqrt{\alpha}$ (intractable)
- minimum trace ellipsoid: error $\sigma/\sqrt{\alpha}$ (tractable)

First pass: minimize_{μ} $\sum_{i=1}^{n} ||x_i - \mu||_2^2$

Second pass: minimize_{$\mu_1,...,\mu_n$} $\sum_{i=1}^n \|x_i - \mu_i\|_2^2$

Final pass: minimize_{μ_1,\ldots,μ_n} $\sum_{i=1}^n ||x_i - \mu_i||_2^2 + \lambda F(\mu_1,\ldots,\mu_n)$

Choices for F:

- nuclear norm: error σ/α
- maximum nuclear norm over subsets: error $\sigma/\sqrt{\alpha}$ (intractable)
- minimum trace ellipsoid: error $\sigma/\sqrt{\alpha}$ (tractable)

Clean-up: remove outliers, cluster the μ_i , output the cluster means

• padded decompositions [FRT '03]

First pass: minimize_{μ} $\sum_{i=1}^{n} ||x_i - \mu||_2^2$

Second pass: minimize_{$\mu_1,...,\mu_n$} $\sum_{i=1}^n \|x_i - \mu_i\|_2^2$

Final pass: minimize_{$\mu_1,...,\mu_n$} $\sum_{i=1}^n f_i(\mu_i) + \lambda F(\mu_1,...,\mu_n)$

Choices for F:

- nuclear norm: error σ/α
- maximum nuclear norm over subsets: error $\sigma/\sqrt{\alpha}$ (intractable)
- minimum trace ellipsoid: error $\sigma/\sqrt{\alpha}$ (tractable)

Clean-up: remove outliers, cluster the μ_i , output the cluster means

• padded decompositions [FRT '03]

Can handle arbitrary convex loss functions

• based on **spectral norm bound** on gradients

Can handle arbitrary convex loss functions

• based on **spectral norm bound** on gradients

Strong bounds in many concrete settings

• mixtures, stochastic block model

Can handle arbitrary convex loss functions

• based on **spectral norm bound** on gradients

Strong bounds in many concrete settings

• mixtures, stochastic block model

Open questions:

- Can larger amounts of **verified data** yield stronger bounds?
- Can we exploit strong convexity / gradient bounds in **other norms**?
- Can we obtain guarantees in the **online setting**?

Meta-Theorem

Let $f_1, \ldots, f_n : \mathbb{R}^d \to \mathbb{R}$ be a collection of κ -strongly convex functions, and let $\overline{f} : \mathbb{R}^d \to \mathbb{R}$ an unknown target function minimized at w^* .

Suppose there is an (unknown) subset $I \subseteq [n]$ of size αn such that

$$\frac{1}{\sqrt{|I|}} \max_{w \in \mathbb{R}^d} \| [\nabla f_i(w) - \nabla \bar{f}(w)]_{i \in I} \|_{\text{op}} \le S.$$

Then, there is an algorithm outputting $m = \frac{2}{\alpha}$ candidates $\hat{w}_1, \ldots, \hat{w}_m$ such that $\min_{j=1}^{m} \|\hat{w}_j - w^*\|_2 = \tilde{\mathcal{O}}(S/(\kappa\sqrt{\alpha})).$

Meta-Theorem

Let $f_1, \ldots, f_n : \mathbb{R}^d \to \mathbb{R}$ be a collection of κ -strongly convex functions, and let $\overline{f} : \mathbb{R}^d \to \mathbb{R}$ an unknown target function minimized at w^* .

Suppose there is an (unknown) subset $I \subseteq [n]$ of size αn such that

 $\frac{1}{\sqrt{|I|}} \max_{w \in \mathbb{R}^d} \| [\nabla f_i(w) - \nabla \bar{f}(w)]_{i \in I} \|_{\text{op}} \le S.$

Then, there is an algorithm outputting $m = \frac{2}{\alpha}$ candidates $\hat{w}_1, \ldots, \hat{w}_m$ such that $\min_{j=1}^{m} \|\hat{w}_j - w^*\|_2 = \tilde{\mathcal{O}}(S/(\kappa\sqrt{\alpha})).$

• Can remove strong convexity (semi-verified model)