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Motivation: data poisoning attacks:

Question: what concepts can be learned in the presence of arbitrarily corrupted data?

(Icon credit: Annie Lin)
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Related Work

• 60 years of work on robust statistics...

PCA:

• XCM ’10, CLMW ’11, CSPW ’11

Mean estimation:

• LRV ’16, DKKLMS ’16, DKKLMS ’17, L ’17, DBS ’17, SCV ’17

Regression:

• NTN ’11, NT ’13, CCM ’13, BJK ’15

Classification:

• FHKP ’09, GR ’09, KLS ’09, ABL ’14

Semi-random graphs:

• FK ’01, C ’07, MMV ’12, S ’17

Other:

• HM ’13, C ’14, C ’16, DKS ’16, SCV ’16
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Problem Setting

Observe n points x1, . . . , xn

Unknown subset of αn points drawn i.i.d. from p∗

Remaining (1− α)n points are arbitrary

Goal: estimate parameter of interest θ(p∗)

• assuming p∗ ∈ P (e.g. bounded moments)

• θ(p∗) could be mean, best fit line, ranking, etc.

New regime: α� 1
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Why Care?

Practical problem: data poisoning attacks
• How can we build learning algorithms that are provably secure

to manipulation?

Fundamental problem in robust statistics

• What can be learned in presence of arbitrary outliers?

Agnostic learning of mixtures
• When is it possible to learn about one mixture component,

with no assumptions about the other components?
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Main Theorem

Observed functions: f1, . . . , fn

Want to minimize unknown target function: f̄
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Main Theorem

Observed functions: f1, . . . , fn

Want to minimize unknown target function: f̄

Key quantity: spectral norm bound on a subset I:

1√
|I|

max
w∈Rd

‖[∇fi(w)−∇f̄(w)]i∈I‖op ≤ S.

Meta-Theorem

Given a spectral norm bound on an unknown subset of αn functions, learning is possible:

• in the semi-verified model (for convex fi)

• in the list-decodable model (for strongly convex fi)

All results direct corollaries of meta-theorem!
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Corollary: Mean Estimation

Setting: distribution p∗ on Rd with mean µ and bounded 1st moments:

Ep∗ [|〈x− µ, v〉|] ≤ σ‖v‖2 for all v ∈ Rd.
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Theorem (Mean Estimation)

If αn ≥ d, it is possible to output estimates µ̂1, . . . , µ̂m of the mean µ such that

• m ≤ 2/α, and

• minmj=1 ‖µ̂j − µ‖2 = Õ(σ/
√
α) w.h.p.
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Ep∗ [|〈x− µ, v〉|] ≤ σ‖v‖2 for all v ∈ Rd.

Observe αn samples from p∗ and (1− α)n arbitrary points, and want to estimate µ.

Theorem (Mean Estimation)

If αn ≥ d, it is possible to output estimates µ̂1, . . . , µ̂m of the mean µ such that

• m ≤ 2/α, and

• minmj=1 ‖µ̂j − µ‖2 = Õ(σ/
√
α) w.h.p.

Alternately, it is possible to output an estimate µ̂ given a single verified point from p∗.
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Comparisons

Mean estimation:

Bound Regime Assumption Samples

LRV ’16 σ
√
1− α α > 1− c 4th moments d

DKKLMS ’16 σ(1− α) α > 1− c sub-Gaussian d3

CSV ’17 σ/
√
α α > 0 1st moments d
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Comparisons

Mean estimation:

Bound Regime Assumption Samples

LRV ’16 σ
√
1− α α > 1− c 4th moments d

DKKLMS ’16 σ(1− α) α > 1− c sub-Gaussian d3

CSV ’17 σ/
√
α α > 0 1st moments d

Estimating mixtures:

Separation Robust?

AM ’05 σ(k + 1/
√
α) no

KK ’10 σk no

AS ’12 σ
√
k no

CSV ’17 σ/
√
α yes
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Other Results

Stochastic Block Model: (sparse regime: cf. GV ’14, LLV ’15, RT ’15, RV ’16)

Average Degree Robust?

GV ’14 1/α4 no

AS ’15 1/α2 no

CSV ’17 1/α3 yes

9



Other Results

Stochastic Block Model: (sparse regime: cf. GV ’14, LLV ’15, RT ’15, RV ’16)

Average Degree Robust?

GV ’14 1/α4 no

AS ’15 1/α2 no

CSV ’17 1/α3 yes

Others:

• discrete product distributions

• exponential families

• ranking
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Proof Overview (Mean Estimation)

Recall goal: given n points x1, . . . , xn, αn drawn from p∗, estimate mean µ of p∗
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Algorithm

First pass: minimizeµ
∑n
i=1 ‖xi − µ‖22
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Algorithm

First pass: minimizeµ
∑n
i=1 ‖xi − µ‖22

Second pass: minimizeµ1,...,µn

∑n
i=1 ‖xi − µi‖22

Final pass: minimizeµ1,...,µn

∑n
i=1 fi(µi) + λF (µ1, . . . , µn)

Choices for F :

• nuclear norm: error σ/α

• maximum nuclear norm over subsets: error σ/
√
α (intractable)

• minimum trace ellipsoid: error σ/
√
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Summary

Method for robustness to large fraction of adversarial data

Can handle arbitrary convex loss functions

• based on spectral norm bound on gradients

Strong bounds in many concrete settings

• mixtures, stochastic block model

Open questions:

• Can larger amounts of verified data yield stronger bounds?

• Can we exploit strong convexity / gradient bounds in other norms?

• Can we obtain guarantees in the online setting?
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Main Theorem

Meta-Theorem

Let f1, . . . , fn : Rd → R be a collection of κ-strongly convex functions, and let f̄ : Rd → R
an unknown target function minimized at w∗.

Suppose there is an (unknown) subset I ⊆ [n] of size αn such that

1√
|I|

max
w∈Rd

‖[∇fi(w)−∇f̄(w)]i∈I‖op ≤ S.

Then, there is an algorithm outputting m = 2
α candidates ŵ1, . . . , ŵm such that

minmj=1 ‖ŵj − w∗‖2 = Õ(S/(κ
√
α)).
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Let f1, . . . , fn : Rd → R be a collection of κ-strongly convex functions, and let f̄ : Rd → R
an unknown target function minimized at w∗.

Suppose there is an (unknown) subset I ⊆ [n] of size αn such that

1√
|I|

max
w∈Rd

‖[∇fi(w)−∇f̄(w)]i∈I‖op ≤ S.

Then, there is an algorithm outputting m = 2
α candidates ŵ1, . . . , ŵm such that

minmj=1 ‖ŵj − w∗‖2 = Õ(S/(κ
√
α)).

• Can remove strong convexity (semi-verified model)
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