
Lyapunov functions

Variants on the Lyapunov conditionVariants on the Lyapunov condition
Guarantee Conditions

convergence to origin

exponential convergence

local stability

V̇ (x) < 0 if x �= 0, V (x) ≥ V (0), V is continuous

V̇ (x) ≤ −cV (x), V (x) ≥ V (0), V is analytic

conditions only need to hold when V (x) < ρ

• Consider a damped pendulum:

mgl sin(θ)− bθ̇ +ml2θ̈ = 0.

• No closed-form equation for trajectories, but we know they all converge
to θ̇ = θ = 0. Why? Because the energy is always decreasing!

• Lyapunov function: a function V of the state x such that V̇ (x) ≤
0. Implies that if V (x(0) < ρ then V (x(t)) < ρ for all t ≥ 0 (global
asymptotic stability, assuming the sublevel sets of V are bounded).

– If ẋ = f(x), then V̇ (x) = ∂V
∂x f(x).

Connection to Bellman Equations
• Suppose we have a Markov chain with a cost h(x, n) on being in state x at time n.

• The “cost-to-go” function is defined as

J(x, n) = E
�

N�

m=n

h(x(m),m) | x(n) = x

�
,

where N is a time horizon.

• The cost-to-go function is the unique solution to the Bellman equations:
J(x, n) = E[J(x(n+ 1), n+ 1) | x(n) = x].

• If the = is replaced with a ≥, then J is instead an upper bound on the cost-to-go. If
J(x, n) ≥ E[J(x, n+ 1)]− c, then J(x, n) + c(N − n) is an upper bound.

• If we set cost to probability of failure, then we get back to the martingale condition, and obtain a proof
of Theorem 1

Martingales
• Stochastic analogue of Lyapunov function

• Non-negative function V such that E[V̇ (x)] ≤ c

• Define E[V̇ (x(t))] as lim
∆t↓0

E[V (x(t+∆t))|x(t)]−V (x(t))
∆t

• If dx(t) = f(x)dt+ g(x)dw(t), where dw(t) is a standard Wiener process,
then

E[V̇ (x(t))] =
∂V

∂x
f(x) +

1

2
Tr

�
g(x)T

∂2V

∂x2
g(x)

�

Why E[V̇ (x)] ≤ c instead of E[V̇ (x)] ≤ 0?

• Consider the equation dx(t) = −xdt+ dw(t) (above)

• Trajectory decays towards origin, then bounces around

• E[V̇ (x)] ≤ 0 will be too strict in this case

• Relaxing to E[V̇ (x)] ≤ c allows us to handle noise at the origin
(improvement over previous work)

Verification of Stochastic Systems
Motivation

•As robots move from factory floors to more demanding 
environments, they will have to cope with increasingly 
complex uncertainty.

•Perceptual uncertainty from stereo vision or cluttered 
environments.

•Dynamical uncertainty from rough terrain, wind gusts, or 
grasping soft fabrics.

•Classical approach: robust control.
•If my uncertainty stays bounded in a certain region, then I 
am guaranteed to reach my goal.

•Problems: heavy-tailed noise, conservative due to worst-
case planning

•Goal: develop algorithms to deal with explicitly-modeled 
uncertainty.

Background
•1965: Kushner provides Lyapunov-like techniques for 
obtaining probabilistic guarantees about trajectories of 
Markov chains; paper includes several handworked 
examples, but he doesnʼt have the computational machinery 
to develop general algorithms.

•2001: Prajna et al. provide an algorithm for bounding 
trajectories of switching systems with Gaussian noise. They 
use sum-of-squares programming on Martingales, but cannot 
handle noise at the origin and use a basis that leads to 
conservative results.

•Our contribution: we combine Prajnaʼs algorithm with 
Kushnerʼs theory to handle noise at the origin. We also work 
in a basis that provides much tighter bounds at the expense 
of more difficult computations.

Martingale Theorem
• A non-negative function V of the state x is a c-martingale if E[V̇ (x)] ≤ c.

• Theorem (Kushner 1965): Suppose that V is a c-martingale in the region
where V (x) < ρ. Then the probability that x leaves the region {x | V (x) <

ρ} before time T is at most V (x(0))+cT
ρ .

• Time-varying version also holds as long as V is a continuous function of
time.

Use in controller synthesis
• A single martingale V will yield bounds for an entire family of controllers
(see figure to right).

• We can use this bound as a proxy for controller quality and optimize our
choice of controller against the provided bound.

• Repeating this process is called DK iteration.

Martingales for Gaussian Systems

• Consider a system with Gaussian noise: dx(t) = f(x)dt+g(x)dw(t), where
dw(t) is a vector of i.i.d. Wiener processes.

• Then E[V̇ (x, t)] = ∂V
∂t + ∂V

∂x f(x) +
1
2 Tr

�
g(x)T ∂2V

∂x2 g(x)
�
.

• We will consider functions of the form V (x) = ex
TSx.

• In this case, we have

E[V̇ (x, t)] = ex
TSx

�
xT Ṡx+ 2xTSf(x) +

1

2
Tr

�
gTSg

�
+

1

2
xTSggTSx

�

Calculating the Expected Derivative Relaxing to a Polynomial Condition
• We want to check if p(x)eq(x) ≤ c for polynomials p and q.

• Re-arrange: p(x) ≤ ce−q(x).

• Note that 1− q(x) ≤ e−q(x) by convexity.

• Sufficient condition: p(x) ≤ c(1− q(x)).

• This is a polynomial condition, and Schur complements can be used to make it bilinear
in the decision variables. We then obtain the end result:

• If

�
I gTSx

xTSg c(1− xTSx)− Tr(gTSg)− 4xTSf(x)− 2xT Ṡx+ λ(x, t)(xTSx− ρ)

�
� 0,

then the probability of a trajectory leaving the region xTSx < ρ is at most ex(0)T Sx(0)+cT
eρ .

Optimization Techniques for Choosing a Martingale

Issues

• Since our bound on the failure probability has an eρ term in the dominator, we will try to make ρ as
large as possible.

• Note that if we fix c and λ, the constraint is linear in S and ρ. Likewise, if we fix S and ρ, the constraint
is linear in c and λ.

• Optimization strategy: First fix c and λ and optimize S and ρ, then fix S and ρ and optimize c
and λ. But, there are a few issues to resolve.

Solutions
• We need to find an initial feasible point.

• In the step when we fix ρ, we need a different objective function (maximizing ρ does
not make since if ρ is fixed).

• Modern numerical optimizers typically give solutions slightly outside the feasible
region. Iterative maximization can cause these errors to accumulate and lead to
numerical instability.

• Initialize with an S matrix for the linearized system and a small value of ρ.

• First minimize c, then maximize c, and take the average of the two solutions (this
attempts to find a point close to the middle of the feasible region).

• After each maximization step, find a feasible point whose objective value is only slightly
less than the value obtained from the maximization. For instance, if the maximization
returns ρ = 2.3, then find a feasible point with the added constraint ρ > 2.29.

Comparison to Other Methods
Quality of Bound
•We compared our approach to a “worst-case” method and to the 
true answer for the rimless wheel system (see below right).

•This system has non-Gaussian noise, so we tried both linearizing 
the noise and adding a state variable to filter the noise through a 
nonlinear transformation.

•Results:
Method Verified # of Ground Impacts

worst-case (non-linear noise) 313

worst-case (linear noise) 428

our method (non-linear noise) 50

our method (linear noise) 12647

exact computation 643600

Scalability
•We compared the scalability of our approach to state 
discretization for verifying stability of a multi-room heating system 
(dimension of state space grows with number of rooms).

•State discretization only scales to 7 rooms (taking about 6 hours). 
Our approach solves the 7-room case in under 15 minutes.

•Our approach can handle at least the 10-room case, and scales 
polynomially with dimension.

Results
Planar Quadrotor

Planar UAV

obstacle

            noiseless trajectory
            99% confidence 

Semidefinite and SOS Programming
• Key idea: to find a good Lyapunov function/martingale, phrase the problem as a constrained polyno-

mial optimization problem.

• We will use tools from semidefinite and sum-of-squares (SOS) programming to solve the optimization

problem.

• Semidefinite programming: while not all optimization problems are tractable, a special subclass known

as semidefinite programs can be solved relatively efficiently. Example: maximizing x + 2y subject to

the constraint that

�
3 + 2x y

y 1

�
� 0.

• Sum-of-squares programming: suppose that I want to check whether the polynomial 4x2y2 + x2 +

16xy + 2x + 4y2 + 4y + 10 is nonnegative. This might be difficult, but if I told you that it was equal

to (x + 2y + 1)2 + (2xy + 3)2, then it would be clearly nonnegative. Sum-of-squares programming

generalizes this idea to transform polynomial optimization problems into semidefinite programs.







