
Finite-time Regional Verification of Stochastic Nonlinear Systems

Jacob Steinhardt
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139-4307

Email: jsteinha@mit.edu

Russ Tedrake
Computer Science and Aritificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139-4307

Email: russt@mit.edu

September 19, 2011

Abstract

Recent trends pushing robots into unstructured environments with limited sensors have
motivated considerable work on planning under uncertainty and stochastic optimal control, but
these methods typically do not provide guaranteed performance. Here we consider the problem
of bounding the probability of failure (defined as leaving a finite region of state space) over a
finite time for stochastic nonlinear systems with continuous state. Our approach searches for
exponential barrier functions that provide bounds using a variant of the classical supermartingale
result. We provide a relaxation of this search to a semidefinite program, yielding an efficient
algorithm that provides rigorous upper bounds on the probability of failure for the original
nonlinear system. We give a number of numerical examples in both discrete and continuous
time that demonstrate the effectiveness of the approach.

1 Introduction

Consider the problem of a legged robot quickly traversing unknown rough terrain, a vision-based
autonomous vehicle flying through a dense forest at high speeds, or a mobile manipulator fetching a
beer out of the refrigerator. Each of these robots will be subject to many sources of uncertainty —
including uncertainty from imperfect perception, imperfect models of robot and environment, and
any unexpected disturbances. At the same time, we hope that our robots are able to accomplish
their tasks by executing high-speed dynamic maneuevers, which demands that a high-performance
control system will have to reason about the nonlinear dynamics of the machine. While there has
been considerable progress recently in designing impressive control systems for this class of machine
(e.g., [2, 9, 20, 31, 27, 26]), there is relatively little work on guaranteeing that these systems can
achieve their goals in the presence of significant uncertainty.

Most notions of stability that are used in deterministic stability analysis do not apply directly
to stochastic stability analysis. For example, a deterministic system that is stable to a fixed

1

point in the sense of Lyapunov (i.s.L.) quickly becomes unstable i.s.L. if it is subjected to even a
small amount of Gaussian noise; in most cases these systems will eventually leave any finite region
around the fixed point with probability 1. In fact, since Gaussian noise is unbounded, worst-case
robustness analysis and approaches, for instance, based on common Lyapunov functions also do
not apply. Instead, here we attempt to analyze the stochastic stability of the nonlinear system over
a finite time horizon — a framework considered in [15], which is also a special case of planning
with chance constraints as formulated in [8]. In particular, we would like to verify an activation
set — a set of intial conditions from which a closed-loop system will provably achieve its goal with
a desired probability. In addition to certifying performance, efficient algorithms for verifying this
stochastic stability will lend themselves naturally to improved methods for feedback design and
planning algorithms under chance constraints.

A common approach to evaluating stochastic stability of nonlinear systems is by converting it to
a finite Markov chain via a finite interpolation of the state-space — either by direct discretization, or
through some more sophisticated technique like volumetric interpolation. However, this approach
has multiple shortcomings — first, such approximations can end up having large effects on the
result, even for relatively large numbers of interpolating functions and for well-behaved systems.
Second, for more than a few dimensions there will not be enough memory on the computer to
store even coarse approximations to the continuous-state dynamics (for instance, a discretization-
based approach in a recent paper hits computation limits around 5 to 8 dimensions [1]; the methods
presented here can solve a similar problem in 10 dimensions). For both of these reasons we have been
led to consider continuous-state verification. In other words, we would like to perform verification
directly on the original system instead of first making a finite-dimensional approximation.

Relatively little progress has been made on the problem of continuous-state, nonlinear, stochas-
tic verification, although many special cases have been studied. If we eliminate stochasticity,
then we can perform sum-of-squares verification on Lyapunov functions [25, 29, 30, 19, 21]. If we
eliminate continuous-state, then exact solutions can be found by taking a matrix exponential (in
continuous-time) or matrix power (in discrete-time) of the transition matrix for the Markov process,
after adding an appropriate absorbing state to capture all of the failed states [6]. If we assume
linearity of the system then the problem falls into the risk-sensitive control framework [13], which
handles not only verification but control design. Risk-sensitive control also deals with nonlinear
systems, but in the nonlinear case typically requires a discretization of the state space, which is
problematic for the reasons discussed above.

There has been some progress on dealing with the general case. The main approach is to
find supermartingales of the system, which bound the probability of leaving a region [3]. These
supermartingales can be thought of as stochastic analogues of Lyapunov functions, and are called
barrier functions in [23]. They can alternately be thought of as upper bounds on a certain cost-to-go
function. We think of these as certificates of stability, in the sense that they certify that the system
will be stable with high probability.

However, unless the noise is zero at some point, no supermartingale exists (see Proposition 2.6).
This requires a slight variation on the supermartingale criterion, as in Kushner [15] or Pham [22],
which gives bounds very similar to our Theorems 2.3 and 2.4. We highly recommend Kushner’s
paper, as it develops a very complete mathematical theory and also works through many practically
relevant examples for various noise models. Kushner also proves Theorems 2.3 and 2.4 of this paper.
The drawback of Kushner’s work is that it does not provide any general algorithms for finding good
supermartingales. We hope to remedy this with our work.

2

Much of the continuous-state verification research has focused on nonlinear systems with Gaus-
sian and switching noise [23, 32]. In this paper we will focus on just Gaussian noise, although we
believe that extending the techniques to include switching systems should not be too difficult. This
is because the theory presented here holds for general Markov processes, with the computational
results we provide tailored to Gaussian noise.

The results in [23] are as far as we know the first to provide an algorithm for finding super-
martingales. However, their approach has a few shortcomings that we address. The first is that their
method requires their barrier function to be a true supermartingale, which by Proposition 2.6 can-
not exist for systems with Gaussian noise; they circumvent this problem by presupposing stochastic
stability for sufficiently small initial conditions, a condition which is difficult to check and not al-
ways true. A second issue is that they search over polynomially growing barrier functions, which
will not give as strong of guarantees as exponential barrier functions. At the same time, while it
is tractable to search over relatively high-degree barrier functions in the CT case, we believe that
such a search becomes quickly infeasible in the DT case because the Lyapunov function composed
with the dynamics leads to a polynomial whose degree is the product of the degrees of the dynamics
and Lyapunov functions; this belief is based mainly on our own efforts to apply the methods of
[23] to the DT case, as [23] only considers the CT case. Finally, we present results for time-varying
systems as well as high-dimensional systems and systems with complex noise dynamics.

To summarize, we are interested in bounding the probability that a nonlinear, possibly time-
varying, system with Gaussian noise leaves a region (either pre-specified or computed as part of
the optimization) in a certain time interval. We will do this by using the supermartingale approach
discussed in [15], searching over a family of exponentially growing barrier functions. We will use
sum-of-squares programming to identify a member of this class that provides a good bound on the
failure probability.

We start in Section 2 by presenting Kushner’s bounds on failure probability. In Section 2 we also
give an overview of sum-of-squares programming, an optimization technique that will be important
for finding a good barrier function. Next, in Section 3, we will define the family of barrier functions
that we intend to search over, and provide semidefinite constraints that allow us to bound the failure
probability. In Section 4, we go over specific algorithms for efficiently finding a good certificate of
stability. In Section 5 we provide validation algorithms for our method. We conclude in Section 6
by providing examples of our approach on a variety of systems, including a pendulum in discrete
and continuous time, a cart-pole system, a simple walking robot example called the rimless wheel,
a planar quadrotor perturbed by wind gusts, and the heating system described in [1].

2 Background

There are two main pieces of background relevant to our approach. The first concerns the bounding
of statistics on Markov processes; this may be familiar to readers either in terms of the Bellman
equations for dynamic programming or in terms of the theory of supermartingales. We will present
both approaches here. This material is presented in Subsections 2.1 through 2.3.

The second piece of background is convex optimization, and, more specifically, sum-of-squares
optimization. This is the tool that allows us to turn our mathematical theory into an efficient
algorithm for verifying a wide range of systems. We omit a general overview of convex optimization
and instead focus on sum-of-squares programming. For more information on convex optimization,
we direct the interested reader to Boyd and Vandenberghe’s book [5], which is available for free

3

online. The sum-of-squares material is presented in Subsection 2.4.

2.1 Statistics on Markov Chains

In this paper, we are interested in showing that the trajectories of a system remain within some
possibly time-varying) “safe” region Rt, where the index t corresponds to time. We will refer to
the probability of ever leaving the safe set before some final time T as the failure probability,
and refer to the problem of upper-bounding the failure probability as stochastic verification.

We can formulate stochastic verification for a given Markov process M as a final value cost
problem on a modified Markov process. We do this by defining a random variable over time, τ ,
that is equal to min(T, inf{t | x(t) 6∈ Rt}). Now modify M into a new process M̃ which stops at
time τ and define a final value cost of 1 if x(τ) 6∈ Rτ and 0 otherwise. Under some mild conditions,
x(τ) 6∈ Rτ exactly captures the trajectories that fail by time T :

Lemma 2.1. Suppose that
⋃
tRt×{t} is an open set and that x is right-continuous with probability

1. Then x(τ) 6∈ Rτ if and only if x(t) 6∈ Rt for some t ∈ [0, T].

As long as the conditions of Lemma 2.1 hold, the expected final cost is exactly the probability
of leaving the safe set Rt for some t ≤ T . This observation implies that upper-bounding the
failure probability for a Markov process M is equivalent to upper-bounding the expected cost for
the modified Markov process M̃. There are two major approaches to upper-bounding cost for a
Markov process — the Bellman equations, and supermartingales. In both cases, the usual strategy
is to find a function of state that is non-increasing in expectation whose value at time T upper-
bounds the final cost; such a function is called a barrier function, and it is an upper bound on
the expected final cost (which would be constant in expectation). However, as we will show, such
functions do not exist for most real dynamical systems (unless the statistics are time-varying), and
we instead must find a statistic that is increasing very slowly in expectation. In this case, a version
of the expected cost bound still holds. There are also generalizations of these results for the case
when there are costs on intermediate states as well as the final state; we will touch on these in the
next subsection, but focus on the final value case.

Before continuing, it will be useful to review a few facts about continuous-time Markov processes.
Suppose that we have some statistic J(x, t) on a Markov process with state variable x. Then it is
natural to consider the “expected derivative” of J :

A J(x(t), t) = lim
t′↓t

E[J(x(t′), t′) | x(t)]− J(x(t), t)

t′ − t
, (1)

where ↓ means that the limit is taken from the right.
If this limit converges uniformly in x and t, then we will refer to J as A-differentiable. The

uniform convergence property is necessary to perform any useful analysis, as the statistic defined

by J(x, t) =

{
0 : t < 1
1 : t ≥ 1

has A J(x, t) = 0 for all t, but is not constant. Fortunately, as long as

J is A-differentiable, we have the following result, which can be thought of as a stochastic analogue
of the fundamental theorem of calculus:

Proposition 2.2 (Dynkin’s formula). Let J(x, t) be A-differentiable. Then E[J(x(τ), τ) | x(t0), t0] =

J(x(t0), t0) + E
[∫ τ
t0
A J(x(s), s)ds

]
for any random time τ .

4

This result, as well as a thorough treatment of the technical issues surrounding statistics of
Markov processes, is covered in Dynkin’s book on the subject [10]. We refer the reader in particular
to equations (1.2) and (5.8) and the surrounding exposition. We note here that Dynkin’s formula
holds for Itō diffusions (differential equations driven by Gaussian noise) as long as J is twice-
differentiable.

In the following two subsections, we will establish upper bounds on the expected cost in two
different ways, obtaining the same bound in both cases. The first method, presented in Sub-
section 2.2, uses the Bellman equations in an optimal control deriviation. The second method,
presented in Subsection 2.3, uses supermartingales. We state the bound here for convenience, in
both discrete-time and continuous-time. The discrete-time and continuous-time bounds appear as
Theorems 2 and 1, respectively, of [14]. In the theorem statements below, J is the aforementioned
barrier function and δ measures the extent to which J fails to decrease in expectation (this is stated
more precisely in the theorems).

Theorem 2.3 (Discrete-time cost bound). Let M be a Markov chain over a space X. Let J be a
scalar function, let δ(n) ≥ 0, and let Bn = {x | J(x, n) +

∑N−1
m=n δ(m) ≤ ρ}. Suppose that

J(x, n) ≥ E[J(x, n+ 1) | x(n)]− δ(n) ∀x ∈ Bn (2)

J(x,N) ≥ 0 ∀x (3)

Bn ⊂ Rn. (4)

Then the probability of failure given initial conditions (x0, n0) is at most

J(x0, n0) +
∑N−1

m=n0
δ(m)

ρ
(5)

Theorem 2.4 (Continuous-time cost bound). Let M be a strong Markov process over a space X
whose trajectories are right-continuous with probability 1. Let J be a scalar function, let δ(t) ≥ 0,

and let Bt = {x | J(x, t) +
∫ T
t δ(s)ds ≤ ρ}. Suppose that J is A-differentiable and that

A J(x, t) ≤ δ(t) ∀x ∈ Bt (6)

J(x, T) ≥ 0 ∀x (7)

Bt ⊂ Rt. (8)

Then the probability of failure given initial conditions (x0, t0) is at most

J(x0, t0) +
∫ T
t0
δ(s)ds

ρ
. (9)

All of the important content for the sequel is in these two theorems. The reader should feel free
to skip either or both of subsections 2.2 and 2.3 if desired.

2.2 Bellman Equations

As before, suppose that we want to evaluate some statistic over a Markov process. If the cost
of being in a state x at time n is h(x, n), and the final value cost is h(x,N), then the cost-to-go

5

function J(x, n) is the solution to the Bellman equations

J(x(n), n) = h(x, n) + E[J(x(n+ 1), n+ 1) | x(n)] (10)

J(x(N), N) = h(x,N). (11)

If instead of evaluating the cost exactly, we wanted to compute an upper bound, then it would
suffice to find a function J such that

J(x(n), n) ≥ h(x, n) + E[J(x(n+ 1), n+ 1) | x(n)] (12)

J(x(N), N) ≥ h(x,N), (13)

and similarly for computing a lower bound. But what if (12) is only approximately satisfied? For
instance, suppose that J(x(n), n) ≥ h(x, n) + E[J(x, n + 1)] − δ(n) for some δ(n) > 0. Then the
function J̃(x, n) = J(x, n) +

∑N−1
m=n δ(m) will satisfy the required inequalities, and therefore be an

upper bound on the cost. We also note that all of these observations continue to hold even if N is
a random time, rather than being deterministic, as long as it is finite in expectation.

With these observation in place, we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Condition (4) of Theorem 2.3 says that x ∈ Rn whenever J̃(x, n) < ρ. We
can therefore bound the failure probability for the condition J̃(x, n) < ρ, since this is a stronger
condition than x ∈ Rn. Recall that the failure probability is equal to the expected cost for the
modified Markov chain M̃, which has h(x, n) = 0 if n < τ or J̃(x, n) < ρ, and h(x, τ) = 1 if
J̃(x, τ) ≥ ρ.

Condition (2) of Theorem 2.3 ensures that J̃/ρ satisfies the Bellman inequality (12) for M̃.
Moreover, condition (3) of Theorem 2.3 ensures that J̃/ρ satisfies (13) — if J̃(x, τ) < ρ, then
J̃/ρ ≥ 0 = h(x, τ), and if J̃(x, τ) ≥ ρ, then tautologically J̃/ρ ≥ 1 = h(x, τ). Thus J̃/ρ is an
upper bound on the expected cost and hence the failure probability, which is the conclusion of the
theorem.

We now move on to the continuous-time case. In this case, we end up with the Hamilton-Jacobi-
Bellman inequalities:

A J(x(t), t) ≤ −h(x(t), t) (14)

J(x(T), T) ≥ h(x(T), T), (15)

where T is the (possibly random) stopping time. As before, (14) and (15) imply that J is an upper
bound on the cost as long as J is A-differentiable. However, this now requires a proof.

Proposition 2.5. Let J0(x(t), t) denote the true expected cost. If (14) and (15) are both satisfied,
and J is A-differentiable, J(x(t), t) ≥ J0(x(t), t) for all t ≤ T .

Proof. Letting J0 be the exact cost function, we obtain:

A(J − J0) ≤ 0 (16)

J(x, T) ≥ J0(x, T). (17)

Now suppose for the sake of contradiction that J(x(t), t) < J0(x(t), t) for some t. Then, applying
Proposition 2.2 (Dynkin’s formula), condition (16) implies that E[(J − J0)(x(T), T) | x(T)] =
(J − J0)(x(t), t) + E[

∫
A(J − J0)(x(s), s)ds] ≤ (J − J0)(x(t), t) < 0, so J(x(T), T) < J0(x(T), T),

which contradicts (17). We therefore must have J(x(t), t) ≥ J0(x(t), t), as was to be shown.

6

With Proposition 2.5 in place, Theorem 2.4 follows in basically the same way as Theorem 2.3,
where we define J̃(x, t) := J(x, t) +

∫ T
t δ(s)ds.

Proof of Theorem 2.4. Condition (8) of Theorem 2.4 says that x ∈ Rt whenever J̃(x, t) < ρ, so we
can again upper bound the probability of leaving Rt by the probability that J̃(x, t) ≥ ρ. We again
seek to compute the expected cost for the Markov chain M̃ with h(x, t) = 0 for t < τ and final

value cost h(x, τ) =

{
0 : J̃(x, τ) < ρ

1 : J̃(x, τ) ≥ ρ .

Now apply Proposition 2.5 with final time τ and cost function J̃/ρ. By condition (6) of The-
orem 2.4, J̃/ρ satisfies the Bellman inequality (16). By condition (7) of Theorem 2.4, J̃/ρ ≥
0 = J0(x, τ) whenever J̃(x(τ), τ) < ρ. Finally, J̃/ρ ≥ 1 = J0(x, τ) tautologically whenever
J̃(x(τ), τ) ≥ ρ. Hence the conditions of Proposition 2.5 are satisfied, and therefore J̃ is an upper
bound on the expected cost, as was to be shown.

2.3 Supermartingales

We now adopt the supermartingale perspective on stochastic verification. We begin with an ex-
tension of the classical result about stability of supermartingales. Recall that a supermartingale
is a function J(x, t) of a Markov process such that E[J(x(t + ∆t), t + ∆t) | x(t)] ≤ J(x(t), t) for
all ∆t ≥ 0. We will instead consider functions that are almost supermartingales, in the sense that
E[J(x(t+ ∆t), t+ ∆t)] | x(t)] ≤ J(x(t), t) +

∫ t+∆t
t c(s)ds for some function c that depends only on

time. We will call such functions c-martingales. Note the similarity to the condition A J(x(t), t) ≤
c(t). In fact, Proposition 2.2 says that A J(x(t), t) ≤ c(t) implies the c-martingale condition. In
discrete time, we instead consider the condition E[J(x(t+ 1), t+ 1)] | x(t)] ≤ J(x(t), t) + c(n).

One might wonder why to bother with extending the martingale condition to the c-martingale
condition (or why we only dealt with approximate solutions to the Bellman equations in the previous
section). One answer lies in the following:

Proposition 2.6. Let dx(t) = f(x)dt+ g(x)dw(t) be a stochastic differential equation on the real
line, where f and g are both continuous. If g(x) > 0 for all x, then there is no time-invariant
supermartingale J(x) that obtains its global minimum on a bounded set.

Proof. Suppose for the sake of contradiction that such a J exists, and let S be the set on which
J obtains its global minimum. Let S̄ be the closure of S. Then S̄ is compact, and hence f and g
obtain minimum values f0 and g0, respectively, on S̄, where g0 > 0. Now since J obtains its global
minimum on S, and J is a supermartingale, for any trajectory x with x(t0) ∈ S, we must have
x(t) ∈ S with probability 1 for any t ≥ t0. Pick x(t0) to be any point in S. Now assuming that the
trajectory x(s) ∈ S for all s ∈ [t0, t], we can upper-bound x(t) by:

x(t) = x(t0) +

∫ t

t0

f(x)dt+ g(x)dw(t)

≥ x(t0) +

∫ t

t0

inf{f(x)}dt+ inf{g(x)}dw(t)

≥ x(t0) +

∫ t

t0

f0dt+ g0dw(t)

= x(t0) + f0 · (t− t0) + g0 · [w(t)− w(t0)].

7

But the final equation is a Gaussian distribution, and hence unbounded. Thus there is some non-
zero probability that x(t) 6∈ S (since S is bounded), which is a contradiction, so J cannot exist.

In particular, unless the noise is equal to zero at some point, no radially unbounded supermartin-
gale can exist. The relaxation of the supermartingale condition to the c-martingale condition is
thus crucial in allowing us to consider interesting classes of systems. We note that our relaxation
of the supermartingale condition is similar to the approach taken in [22] for contracting systems.

We can also draw an analogy between c-martingales and amortized analysis in computer science
— if there is some function of our state that increases slowly, then it will be a long time before it
can reach a large value. If we can find a function J of our state that increases slowly in expectation
(such as a c-martingale for small c), and J is large outside of a region of state space, then it will
take a long time for a trajectory of the system to escape that region.

We will now prove Theorems 2.3 and 2.4 from the perspective of supermartingale theory.

Proof of Theorem 2.3. Note that if J is a c-martingale, J̃(x, n) := J(x, n)+
∑N−1

m=n δ(m) is a super-
martingale in the region where J̃(x, n) < ρ. Define a stopping time τ for M as the minimum of T
and min

n
{J̃(x(n), n) ≥ ρ}. Then by the optional stopping theorem, the expected value of J̃ at τ is

at most J̃(x(t0), t0). Thus by Markov’s inequality, the probability that J̃ ≥ ρ is at most J̃(x(t0),t0)
ρ .

Since J̃(x(τ), τ) ≥ ρ for all failed trajectories, this means that the probability of failure is at most
J̃(x(t0),t0)

ρ as well, as was to be shown.

Proof of Theorem 2.4. Note that if J is a c-martingale, J̃(x, t) := J(x, t) +
∫ T
t δ(t)dt is a super-

martingale in the region where J̃(x, t) < ρ. Define a stopping time τ for M as the minimum of T
and inf

t
{J̃(x(t), t) ≥ ρ}. Since J̃ and δ are continuous and trajectories of M are right-continuous,

J̃(x(τ), τ) ≥ ρ whenever the minimum is attained by the inf (rather than by T).
By the optional stopping theorem, the expected value of J̃ at τ is at most J̃(x(t0), t0). Thus by

Markov’s inequality, the probability that J̃ ≥ ρ is at most J̃(x(t0),t0)
ρ . But as shown in the preceding

paragraph, J̃(x(τ), τ) ≥ ρ for all failed trajectories. This implies that the probability of failure is

at most J̃(x(t0),t0)
ρ as well, as was to be shown.

In the following sections, we will discuss how to usefully apply Theorems 2.3 and 2.4 to dynam-
ical systems with Gaussian noise.

2.4 Sum-of-squares Programming

Suppose that we want to compute the global minimum of a polynomial p(x1, . . . , xn). We could
formulate this as the optimization problem

maximize
δ

δ

subject to p(x)− δ ≥ 0 ∀x.
(18)

This problem is NP-hard in general; however, if we could write p(x) − δ = h(x)TQh(x) for some
matrix Q � 0, then we would know that p(x)− δ ≥ 0 for all x. We can thus replace (18) with

8

maximize
Q,δ

δ

subject to p(x)− δ = h(x)TQh(x)

Q � 0.

(19)

This is now a semidefinite program, which can be solved efficiently by an optimizer such as SeDuMi
[28]. Typically h will be a vector of monomials, but this is not a necessity. The existence of a
Cholesky factorization when Q � 0 implies that p(x) − δ can be written as a sum of squares of
other polynomials, which is how sum-of-squares programming gets its name.

We can more generally consider programs with several positivity constraints, e.g.

maximize
α

hTα

subject to αT pi(x) ≥ 0, i = 1, . . . ,m,
(20)

which are then replaced with

maximize
α,Q

hTα

subject to αT pi(x) = hi(x)TQihi(x), i = 1, . . . ,m

Qi � 0, i = 1, . . . ,m.

(21)

The α are referred to as decision variables and the x are referred to as free variables. The expression
hTα is called the objective of the program, since it is the quantity that we are trying to maximize.

An extension of this approach is to matrix sum-of-squares, where one includes in (20) constraints
of the form Pi(x) � 0, where Pi is a matrix of polynomials with coefficients linear in α. Since
Pi(x) � 0 if and only if yTPi(x)y ≥ 0 for all y, we can encode such polynomial semidefiniteness
constraints by adding additional free variables to the program.

We may also wish to only enforce a constraint pi(x) ≥ 0 in some region described by qi(x) ≤ 0. In
this case, we can introduce a Lagrange multiplier λ(x) and impose the constraints pi(x)+λ(x)qi(x) ≥
0 and λ(x) ≥ 0. Note that only one of λ and qi can be optimized over at once; the other one must
be constant to avoid decision variables appearing nonlinearly in the constraints. If we wish to
optimize over both λ and qi, then we generally fix one and optimize over the other, then alternate
and repeat until convergence.

We finally make note of the method of Schur complements, which allow us to re-formulate
certain nonlinear constraints as semidefinite constraints. More precisely, we have that A � 0 and

BTA−1B � C if and only if

[
A B
BT C

]
� 0.

Sum-of-squares programs can be formulated using the MATLAB package YALMIP [16]. YALMIP
is a modeling language for both convex and non-convex programs. YALMIP has built-in support
for several optimizers; we used SeDuMi [28] for our work. SeDuMi is a software package for op-
timizing over symmetric cones. While the final version of our code uses YALMIP, we also used
CVX [11, 12] and SOSTOOLS [24] during development. CVX is a modeling language for convex
programs; SOSTOOLS is a MATLAB toolbox for sum-of-squares programs. All of the software
mentioned here is freely available online.

9

3 Certificates of Stability

Theorems 2.3 and 2.4 show us how to obtain true certificates of stability from approximate cer-
tificates. In order to usefully apply these theorems, we need to pick a suitable barrier function
for a given system. Using the machinery described in Subsection 2.4, we will find the best barrier
function over an entire parameterized family.

For now, the systems we are interested in have polynomial dynamics and (possibly state-
dependent) Gaussian noise. Note that in practice, we can Taylor expand most systems in order to
obtain polynomial dynamics. In the DT case, the family of systems we consider are of the form
xn+1 = f(xn) + g(xn)wn, where wn is unit covariance white noise and f and g are polynomials. In
the CT case, we consider systems of the form dx(t) = f(x)dt + g(x)dw(t), where w is a vector of
independent unit-variance Wiener processes, and f and g are again polynomials. All of the follow-
ing results also hold for time-varying f and g, but we will sometimes omit the possible dependence
on t to keep the equations more readable.

We will consider barrier functions of the form JS(x, t) = ex
TS(t)x − 1. According to the bounds

in Theorems 2.3 and 2.4, functions which grow quickly will yield tighter bounds. Functions of the
form considered here can grow more quickly than the polynomials used in [23]. Note that, in the
DT case, including cubic or higher terms in the exponent would make the expected value of JS
infinite with respect to Gaussian noise (this is not true for the CT case).

Our general goal in the next few sections will be to first explicitly compute the conditions of
Theorems 2.3 and 2.4 for our choice of system and barrier function. Then, we will use various
inequalities to strengthen the conditions to conditions that are polynomial in x and linear in the
various decision variables (which will in this case be S, ρ, and a few other variables to be defined
below). Unfortunately, we will not quite achieve this goal; the conditions will instead be bilinear
in the decision variables, a problem we will address in Section 4.

3.1 Discrete-time

In discrete-time, we can compute

E[JS(x(t+ 1)) | x(t)] = det(I − 2gTSg)−
1
2 ef(x)TS(S−2SggTS)

−1
Sf(x) − 1.

Applying Theorem 2.3 to JS lets us bound the failure probability by

ex(0)TS(0)x(0) − 1 +
∑N−1

n=0 δ(n− 1)

eρ − 1
(22)

as long as xTS(n)x ≥ ρ for all x 6∈ Rn and

δ(n− 1) ≥ det(I − 2gTS(n)g)−
1
2 ef

TS(n)(S(n)−2S(n)ggTS(n))−1S(n)f − exTS(n−1)x (23)

whenever xTS(n)x < ρ. The expression for δ(n − 1) is cumbersome, as it involves a determinant
as well as the difference of two exponential functions. The following two lemmas let us relax the
expression to a condition on polynomials.

Lemma 3.1. det(I −M) ≥ 1− Tr(M) when 0 �M � I.

10

Lemma 3.2. Let p0, q0, and r0 be real numbers with r0 < 1, and let M := (1 − r0)−
1
2 ep0 − eq0.

Suppose that M ≥ 0 and

(1− r0)−
1
2 ep0(p− p0)− eq0(q − q0) ≤ δ (24)

r ≤ r0. (25)

Then
(1− r)−

1
2 ep − eq ≤Me

δ
M . (26)

Proofs for these lemmas may be found in the appendix. Applying the two lemmas and the
Schur complement, we obtain the following proposition:

Proposition 3.3. Consider a system of the form xn+1 = f(xn) + g(xn)wn, and let JS(x, n) :=

ex
TS(n)x − 1. Suppose that for all n and all x with xTS(n− 1)x < ρ, we have

S(n) � 0 (27)

b(n) ≤ 1 (28)[
1 b(n− 1)

b(n− 1) 2b(n− 1)− 2 Tr(g(x, n− 1)TS(n)g(x, n− 1))

]
� 0 (29)[

S(n)− 2P (n) S(n)f(x, n− 1)
f(x, n− 1)TS(n) (1− b(n− 1))xTS(n− 1)x

]
� 0 (30)[

I g(x, n− 1)TS(n)
S(n)g(x, n− 1) P (n)

]
� 0. (31)

Then the probability that JS(x, n) ≥ ρ for any 0 ≤ n ≤ N is at most

ex
T
0 S(t0)x0 − 1 +

∑N−1
n=t0

(1− b(n))−1 − 1

eρ − 1
. (32)

The derivation may be found in the appendix.

Remark If the noise g is 0, we can set b to 0. It is easy to check that the constraints then reduce
to the Lyapunov equation f(x)TS(t)f(x) ≤ xTS(t− 1)x.

3.2 Continuous-time

We now turn to the continuous-time case. Recall that we are interested in the infinitesimal operator
A J(x, t) defined in Equation 1. For systems of the form dx(t) = f(x)dt+g(x)dw(t), we can compute
[32]

A J(x, t) =
∂J

∂t
+
∂J

∂x
f(x) +

1

2
Tr

(
g(x)T

∂2J

∂x2
g(x)

)
. (33)

For functions of the form JS(x) = ex
TS(t)x − 1, (33) becomes

A JS(x, t) = ex
TSx ×

[
xT Ṡx+ 2xTSf + Tr

(
gTSg

)
+ 2xTSggTSx

]
. (34)

Then Theorem 2.4 implies that the failure probability is bounded by

ex(0)TS(0)x(0) − 1 +
∫ T

0 δ(t)dt

eρ − 1
(35)

11

as long as (i) xTSx ≥ ρ for all x 6∈ Rt and (ii) δ(t) ≥ exTSx
[
xT Ṡx+ 2xTSf + Tr(gTSg) + 2xTSggTSx

]
whenever xTSx < ρ. We would therefore like an analog of Lemma 3.2 for functions of the form
p(x)eq(x). The following will suffice:

Lemma 3.4. Suppose that p(x) ≤ p0(1 + q0 − q(x)) and p0 ≥ 0. Then p(x)eq(x) ≤ p0e
q0.

The proof is in the appendix. Using Lemma 3.4 and the Schur complement, we obtain:

Proposition 3.5. Consider a system of the form dx(t) = f(x)dt + g(x)dw(t), and let JS(x, t) =

ex
TS(t)x − 1, where S is a continuous matrix-valued function of time. Suppose that for all t and all

x with xTS(t)x < ρ, we have

S(t) � 0 (36)[
1
2I gTSx

xTSg b(1− xTSx)− xT Ṡx− 2xTSf − Tr(gTSg)

]
� 0. (37)

Then the probability that JS(x, t) ≥ ρ for any 0 ≤ t ≤ T is at most

ex
T
0 S(t0)x0 − 1 +

∫ T
t0
b(s)ds

eρ − 1
. (38)

The derivation may be found in the appendix.

4 Optimizing over S

Propositions 3.3 and 3.5 give us regional polynomial conditions to check in order to get upper
bounds on the failure probability. This can be accomplished by sum-of-squares programming with
Lagrange multipliers (see Subsection 2.4). However, instead of checking a fixed set of constraints,
we would like to be able to optimize the decision variables to minimize the value of our upper
bound. If we let λ denote the added Lagrange multipliers, then constraints (27-31) and (36-37) are
linear in S and ρ, and also linear in λ and b. Unfortunately, they are not linear in all of S, ρ, λ,
and b jointly. As a result, we will need to do some additional work to reduce the constraints to a
sum-of-squares program. We also need to choose a good objective function for the program, since
the probability bounds (32) and (38) are too complex to optimize directly.

Another practical issue is where in the equations to place Lagrange multipliers. In the algorithms
presented below, we present potential examples of places to add them, but in any specific case the
efficiency of the method will depend greatly on careful choices of where to put Lagrange multipliers
and what degree of multiplier to use. In instances where the Lagrange multiplier is an entire matrix
of polynomials, we recommend a strategy such as constraining the polynomial to be a multiple of
the identity, or leaving it out altogether if possible.

We will describe below two different approaches for optimizing the decision variables. The first
works for both DT and CT systems, as long as they have time-invariant dynamics. The second
approach only works for CT systems, but can handle time-varying dynamics (the ideas extend to
the DT case in principle, but we have been unable to actually get the method to work for DT in
practice, partly due to numerical issues).

For now, when the dynamics are time-varying, we will only check the constraints at a finite
(but ideally finely-spaced) set of times t1, . . . , tk, following [30]. We also need to choose how to

12

parameterize S as a function of time. The easiest would be to make it piecewise constant, but
we need S to be continuous. We therefore choose an S that is piecewise linear on each [ti, ti+1].
Note that this means that S is not differentiable at the ti, and so we need to check the constraints
for both the left- and right-derivatives of S. We also note that there exist more sophisticated
approaches for dealing with time-varying constraints, as discussed in [30].

Finally, note that all of the algorithms described below are also provided as pseudocode in the
appendix. The pseudocode for Subsection 4.1 is in Algorithms 1-4. The pseudocode for Subsec-
tion 4.2 is in Algorithm 5.

4.1 Method 1: Linearize and Binary Search

Our first method begins by considering the system linearized about a given fixed point and finding
values S0 and b0 that work well for the linearized system. The linear case allows us to satisfy the
constraints globally, and hence we can ignore λ and ρ. Once we have found S0 and b0, we move
back to the original system, but only consider multiples cS0 of S0. For any fixed ρ, we can binary
search over c, and this turns out to leave us with a sum-of-squares program. We expand on these
ideas below.

Without loss of generality, we can assume that we are linearizing about the origin. Then let
F := ∇f(0) be the dynamics linearized about the origin. We will also approximate the noise as
having a constant value of g(0).

DT case: If we apply Proposition 3.3 to a time-invariant system with linear dynamics and
constant noise, we get the constraints:

S0 � 0 (39)

b0 ≤ 1 (40)[
1 b0
b0 2b0 − 2 Tr(g(0)TS0g(0))

]
� 0 (41)[

S0 − 2P0 S0F
F TS0 (1− b0)S0

]
� 0 (42)[

I g(0)TS0

S0g(0) P0

]
� 0 (43)

Note that (42) is equivalent to asking that

[
S0 − 2P0 S0Fx
xTF TS0 (1− b)xTS0x

]
≥ 0 for all x, which is what

(30) would have asked for. For any fixed b0, constraints (39-43) form a semidefinite program in
S0. We can thus perform a line search over b0, solving a semidefinite program over S0 for each
value. However, we need a good objective to optimize against. We choose to maximize α such that
S0 � αM , for some well-chosen matrix M (this is equivalent to requiring that xTS0x ≥ α whenever
xTMx ≥ 1). There are two reasons to use this objective. First, if xTMx gives an indication of how
nonlinear the system is at x, then we want xTS0x to be large whenever xTMx is large; this makes
it more likely that S0 will work well for the nonlinear system. Second, if M defines some safety
constraint (i.e. the system is safe if xTMx < 1), then we would like S0 to be large relative to M in
order to minimize the failure probability.

With S0 computed in this way, we turn to the original nonlinear system. Set S to be cS0,
apply Proposition 3.3, and add Lagrange multipliers λ(x) to check the constraints in the region

13

xTS0x < ρ. Then we get the constraints:

c ≥ 0 (44)[
1 b
b 2b− 2cTr(gTS0g)

]
� 0 (45)

λ1(x), λ2(x), λ3(x) ≥ 0 (46)[
cS0 − 2P cS0f
cfTS0 (1− b)cxTS0x+ λ1(x)(xTS0x− ρ)

]
� 0 (47)[

I + λ2(x)(xTS0x− ρ) cgTS0

cS0g P + λ3(x)(xTS0x− ρ)

]
� 0. (48)

We may also care about the constraint S0 � ρM in the case that xTMx < 1 is a safety condition.
This last constraint merely constrains ρ to lie in some interval and hence can be easily dealt with.

Note that the Lagrange multipliers ask for the constraints to hold in the region xTS0x < ρ,
which is the same as xT (cS0)x > cρ. Since the dominant term in the probability bound (32) is
then ecρ, we would like to make cρ as large as possible, which for a fixed ρ is the same as making c
as large as possible. It is easy to check that making c larger makes (45-48) harder to satisfy. Our
strategy is thus to perform a line search over ρ and then binary search on c. In practice, we find
that the maximum possible value of c is fairly flat up to some critical value of ρ, after which it
decays sharply.

CT case: If we apply Proposition 3.5, we get the constraints:

S � 0 (49)[
1
2I g(0)TS0x

xTS0g(0) b0 − Tr(g(0)TS0g(0))− xT (b0S0 + S0F + (S0F)T)x

]
� 0. (50)

We can re-write (50) as[
I 0
0 x

]T [1
2I g(0)TS0

S0g(0) −(b0S0 + S0F + (S0F)T)

] [
I 0
0 x

]
+

[
0 0
0 b0 − Tr(g(0)TS0g(0))

]
� 0,

so that we can replace (50) with the two constraints[
1
2I g(0)TS0

S0g(0) −(b0S0 + S0F + (S0F)T)

]
� 0 (51)

Tr(g(0)TS0g(0)) ≤ b0. (52)

The system (49,51,52) is again semidefinite for a fixed value of b0, so we can apply the same strategy
as before of line searching over b0 and then optimizing α against S0.

For the nonlinear system, we again set S to be cS0. Then after applying Proposition 3.5 and
adding Lagrange multipliers, we get the constraint[

1
2I + λ1(x)(xTS0x− ρ) gT cS0x

cxTS0g b(1− cxTS0x)− 2cxTS0f − cTr(gTS0g) + λ2(x)(xTS0x− ρ)

]
� 0

(53)

λ1(x), λ2(x) ≥ 0
(54)

14

As in the DT case, our goal is to maximize cρ. We line search over ρ and then binary search over
c to find the largest possible c for a fixed ρ.

4.2 Method 2: Bilinear Optimization

Our next method works for time-varying systems. However, we have only been able to successfully
implement it for continuous-time systems. As such, we will only describe it in the continuous-time
setting.

After adding Lagrange multipliers, the constraints from Proposition 3.5 become

S(t) � 0 (55)[
1
2I gTSx

xTSg b(1− xTSx)− xT Ṡx− 2xTSf − Tr(gTSg) + λ(x)(xTSx− ρ)

]
� 0 (56)

λ1, λ2 ≥ 0. (57)

These are linear in S and ρ for fixed values of b and λ, and they are linear in b and λ for fixed
values of S and ρ. Our strategy is thus to alternate between optimizing (S, ρ) for fixed (b, λ),
and optimizing (b, λ) for fixed (S, ρ); we then repeat until convergence. However, we need a good
objective to optimize against in each case. Since the dominant term in the probability bound (38)
is the eρ in the denominator, a good proxy for minimizing the probability bound is to make ρ as
large as possible. We will use this when optimizing against (S, ρ). However, we cannot use this
when optimizing against (b, λ), as ρ is no longer a decision variable in this case! Instead, we will
try to choose values of b and λ that leave as much room for future growth of ρ as possible (in other
words, we want to choose b and λ that are well within the interior of the constraint polytope).
We do this by first maximizing b, then minimizing b, then taking the average of the two results.
By convexity, this point still satisfies the constraints, and since it is the average of two opposite
extremes it is likely to be far away from the boundary of the constraint polytope.

A final issue is how to actually initialize the bilinear search, as we require at the very least a
feasible initial point (S, ρ, b, λ). Also, since the bilinear search is not necessarily finding a global
optimum, the choice of initial point will potentially affect the performance of the algorithm. We
outline our current approach to initialization here, although this is one part of our algorithm that
could use improvement. We first remove the Lagrange multipliers and arbitrarily set b to be 1,
which results in an optimization over S only (ρ is irrelevant now that the Lagrange multipliers are
gone). However, the only feasible value of S will be 0 unless the system is globally stable, so we
also Taylor expand all the constraints to second order (this roughly corresponds to linearizing the
system). To ensure that S is not too close to the boundary of the feasible region, we then optimize
Tr(HTS) for several randomly chosen matrices H and take the average value.

A strictly feasible point for the linearized constraints will be feasible for the actual constraints
as long as ρ is small enough, so we can then decrease ρ until S is in the feasible region.

The pseudocode for the bilinear search (without the initialization step) can be found in Algo-
rithm 5.

5 Validation Methods

In this section we discuss approaches for validating the output of our algorithm. First, as noted
by Johan Löfberg[16], it is important to realize that due to termination conditions and numerical

15

tolerances, the output of the SDP solver may not be a valid sum-of-squares certificate for our
problem. When accuracy is a premium, we make use of the techniques presented in [17] to attempt
to obtain a true certificate.

We can also verify the certificate empirically. Note that if the certificate is valid, then E[JS(x(t+

∆t)) | x(t)] ≤ JS(x(t)) +
∫ t+∆t
t b(s)ds. Thus for any time t, P[JS(x(t + ∆t)) > 2(JS(x(t)) +∫ t+∆t

t b(s)ds)] < 1
2 by Markov’s inequality. We can thus simulate N different trajectories, and for

a specific choice of t and ∆t look at the number of trajectories where JS(x(t+ ∆t)) > 2(JS(x(t)) +∫ t+∆t
t b(s)ds). If this is significantly greater than N

2 , then our certificate is invalid. If this is less

than or equal to N
2 , then it provides evidence in favor of the certificate being valid (although is not

a proof of validity). We can quantify what “significantly greater than N
2 ” means in terms of the

P -value of a one-sided binomial test (a test to see whether the probability of an event is greater
than a given number θ; in this case, θ = 1

2). Of course, there is nothing special about the number
2. We could replace it with any constant greater than 1 and get a similar test.

Finally, the certificates can always be evaluated through Monte-Carlo; e.g., by simulating many
trajectories of the stochastic system and simply counting how many leave the ρ-sublevel set of JS .
In practice, we hope that our bounds are relatively tight over-estimates of this probability of failure.
This exhaustive simulation approach is only suitable for relatively low-dimensional examples.

6 Examples

Now that we have covered the theoretical underpinnings of our method, we will demonstrate its
effectiveness with several examples. For each example, we first describe the system, then indicate
which M matrix we used (see Section 4), the values of S0 and b0, the values of c and ρ, and the
final probability bound.

6.1 Example 1: Linear 1D Systems

Our first example is a test of how tight our bounds are. We considered the system

dx(t) = −xdt+ σdw(t) (58)

for varying values of σ in the range [0, 2], and computed the probability that |x(1)| ≥ 1 given that
x(0) = 0. We did this both by exhaustive Monte Carlo simulation and by using Algorithm 3. We
similarly considered the system

x(n+ 1) = (1−∆t) · x(n) +
√

∆tσw(n) (59)

for ∆t = 0.01. This is the discrete-time approximation to the continuous-time system defined in
(58). The results are given in Figure 1. Our bounds are reasonably tight for σ close to 1. In
particular, our answer is within a factor of 2 of the true answer for σ ∈ [0.7, 1.2]. In addition,
our bound outputs negligibly small failure probabilities (less than 10−8) for σ ≤ 0.2, whereas the
true failure probability falls below 10−8 somewhere around σ = 0.3 (this answer is approximate, as
we did not have the computational resources to simulate 108 trajectories). This suggests that our
method performs well relative to the truth as long as the noise is about the same size as the signal,
and will output very small probabilities when the signal-to-noise ratio is at least 5.

16

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigma

fa
ilu

re
 p

ro
b

a
b

ili
ty

Failure Probability (DT)

bound

actual

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigma

fa
ilu

re
 p

ro
b

a
b

ili
ty

Failure Probability (CT)

actual

bound

Figure 1: True probability of failure (blue) versus computed probability bound (red) as a function
of the noise variance. Left: discrete-time. Right: continuous-time.

6.2 Example 2: Simple Pendulum, Discrete Time

Our second example is a pendulum stabilized about the upright with a time step of ∆t = 0.01. We
use the following equations for the pendulum dynamics (the sin term has been Taylor expanded to
third order): [

θn+1

θ̇n+1

]
=

[
θn + 0.01θ̇n

−0.0167θ3
n − 0.3θn + 0.97θ̇n

]
+

[
0.01w1,n

0.05w2,n

]
.

We want to bound the probability that θ leaves the region
(
−π

6 ,
π
6

)
after 3600 seconds. We thus

set M to

[(
6
π

)2
0

0 0

]
, as then xTMx > 1 ⇐⇒ |θ| > π

6 .

For b0 = 0.0136, we get S0 =

[
71.36 3.75
3.75 2.55

]
with α = 18.05. When we verify on the nonlinear

system, we get c = 0.955, ρ = 17.24 (ρ is equal to cα because the constraint S � ρM , which ensures
that the region xTSx < ρ satisfies the constraint on θ, was the first to become tight). Figure 2
shows the log of the failure probability plotted against initial conditions.

Note that we get strong bounds (failure probabilities less than 10−3) for a large region around
the origin. For the sake of comparison, we estimated the actual failure probability using a Kalman
filter for the linearized system, also included in Figure 2. While the true probabilities are much
smaller than verified (10−10 vs. 10−4), the verified region of stability is not much smaller than the
actual region of stability. For most robotics applications we are more interested in the operating
region where we have a high success probability than in how small the failure probability is for zero
initial conditions. In this respect our verification method is close to the true answer.

6.3 Example 3: Simple Pendulum, Continuous Time

We perform the same optimization as before, checking against the continuous-time version of the

constraints. For b0 = 1.51, we get S0 =

[
78.45 4.17
4.17 2.82

]
with a corresponding α value of 19.82.

When we verify on the nonlinear system, we get c = 1.0, ρ = 19.82. The failure probability is

17

theta (radians)

th
e
ta

d
o
t
(r

a
d
ia

n
s
/s

e
c
.)

Pendulum (Discrete Time)

−0.5 0 0.5

−3

−2

−1

0

1

2

3

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

theta (radians)

th
e
ta

d
o
t
(r

a
d
ia

n
s
/s

e
c
.)

Pendulum (Kalman Filter Approximation)

−0.5 0 0.5

−3

−2

−1

0

1

2

3
−10

−8

−6

−4

−2

0

Figure 2: The log-base-10 of the failure probability for the discrete-time pendulum after one hour.
Left: failure probability plotted against initial conditions, verified with our algorithm. Right:
estimated failure probability for the linearized discrete-time pendulum, computed with a Kalman
filter.

plotted in Figure 3.

6.4 Example 4: Cart-Pole Balancing, Continuous Time

The next example demonstrates that our approach is scalable to more complicated systems. It
is also an example of including observation noise in the model. The cart and pole system is a
pendulum with length L and mass mp attached to a cart with mass mc. The system is actuated by
a force u on the center of mass of the cart. Letting θ = 0 when the pendulum is pointing straight
up, the equations of motion are

ẍ =
u−mp sin(θ)(Lθ̇2 − g cos(θ))

mc +mp sin(θ)2
,

θ̈ =
u cos(θ)−mpLθ̇

2 cos(θ) sin(θ) + (mc +mp)g sin(θ)

L(mc +mp sin(θ)2)
.

We set mp = 1.0, mc = 10.0, L = 0.5, g = 9.8, and take a third-order Taylor expansion to get the
following dynamics:

dx
dθ
dẋ

dθ̇

 =

ẋ

θ̇

−.75θ3 − .01θ2u− .05θθ̇2 + .98θ + .1u

−5.75θ3 − .12θ2u− .1θθ̇2 + 21.56θ + .2u

 dt
+ diag

([
0.03 0.03 0.1 0.1

])
dw(t).

To stabilize this system, we apply LQR control to the linear system with cost matrices Q =
diag([10, 10, 1, 1]), R = 0.1 to get a gain matrix of K =

[
−10.0 289.83 −19.53 63.25

]
.

Let us suppose that we also have independent measurement noise on x, θ, ẋ, and θ̇, with
standard deviations of 0.01, 0.01, 0.03, and 0.03, respectively. Our feedback law will push this
noise back into the dynamics, adding 4 extra noise channels that end up being functions of θ.

18

theta (radians)

th
e
ta

d
o
t
(r

a
d
ia

n
s
/s

e
c
.)

Pendulum (Continuous Time)

−0.5 0 0.5

−3

−2

−1

0

1

2

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x (meters)

th
e
ta

 (
ra

d
ia

n
s
)

Cartpole Balancing (Continuous Time)

−4 −2 0 2 4

−0.5

0

0.5 −7

−6

−5

−4

−3

−2

−1

0

Figure 3: The log-base-10 failure probabilities for two continuous-time systems. Left: balancing for
the pendulum, as a function of initial conditions. Right: balancing for the cartpole, as a function
of initial conditions in x and θ (the initial conditions for ẋ and θ̇ are fixed to 0).

Because the major source of nonlinearity is θ, want xTS0x to grow quickly with θ. We will there-

fore setM to diag
([

0 1 0 0
])

. For b0 = 0.728, we get S0 =

1.23 −6.01 1.29 −0.93
−6.01 115.71 −10.86 11.36
1.29 −10.86 2.98 −2.23
−0.93 11.36 −2.23 2.63

,

with α = 62.18. When we verify on the nonlinear system, we get c = 0.9023, ρ = 10.38. Figure 3
contains a visualization of the failure probability after one hour.

6.5 Example 5: Rimless Wheel

The rimless wheel is a common model for walking first introduced in [18]. It is a wheel consisting of
ns spokes, each of length L, connected at a point. The angle between consecutive spokes is θ = 2π

ns
.

The spokes are massless; the central point has a mass of M . The rimless wheel typically rolls down
a hill, say with slope angle γ. When a spoke impacts the ground, the collision is inelastic, conserves
angular momentum, and immediately transfers support to the next spoke. Because of the impacts,
the rimless wheel is an inherently discrete-time system. One way to compute its dynamics across
several collisions is via the Poincaré return map, which gives the angular velocity at the point where
the stance leg is vertical. If we let ωn denote this angular velocity between the nth and (n + 1)st
impacts, and let xn = ω2

n, then [7]

xn+1 = cos2(θ)

(
xn +

2g

L
(1− cosβ1)

)
− 2g

L
(1− cosβ2),

where β1 = θ
2 + γ and β2 = θ

2 − γ. As in [7], we model γ as Gaussian with mean γ0 = 8◦ and
standard deviation σ = 1.5◦. This means that the actual noise to the system is non-Gaussian since
it is filtered through a cosine. The system is locally stable to some value x̄ > 0 as well as to the
state where both stance legs are on the ground and the wheel stops moving. We will consider this
second stable point a failure state, which corresponds to xn ≤ 0.

We will compare the following approaches to bounding the time until the wheel enters this
failure state:

19

One-step slope bound (nonlinear) 313 impacts

One-step slope bound (linear) 428 impacts

Noise as state variable 50 impacts

Linearized noise 12647 impacts

Discrete-state 643600 impacts

Table 1: Expected failure time/50% failure probability thresholds for the rimless wheel. The first,
second, and last bounds compute expected failure times, while the second and third bounds compute
the time with a 50% failure probability.

1. Find the smallest slope γs such that the rimless wheel would roll forever with a constant slope
of γs. Then compute the probability that γ < γs. The expected time to failure is at least the
reciprocal of this probability.

2. Let vn denote γ − γ0 for time n + 1. Then vn is Gaussian, and it is okay that it affects the
dynamics in a nonlinear way because it is a state variable. We can then apply the techniques
of this paper to find a time that has at most a 50% probability of failure.

3. Approximate the noise as an appropriate Gaussian by linearizing around γ0, then apply the
techniques of this paper.

4. Discretize the state space and compute the expected time to failure exactly (up to the dis-
cretization) by solving a system of equations, as in [7].

In order to make the point of stability the origin, we make the change of coordinates x 7→ x− x̄.
In the first approach, solving for γs yields 3.91◦ in the nonlinear noise case and 3.76◦ in the

linearized case. The respective bounds on expected time to failure are 313.08 and 427.74 impacts,
respectively.

In the second approach, we set M to

[
1
x̄2

0
0 0

]
. On the nonlinear system, we obtain c = 0.972,

ρ = 3.73, leading to a bound of 0.4057T for initial conditions at the origin. We thus hit 50% failure
at T = 40.49

2×0.4057 = 49.90 impacts. This compares poorly to the first approach, which may imply
that dealing with non-Gaussian noise by filtering it through nonlinear dynamics does not work well
in practice.

In the third approach, we set M to 1
x̄2

. We get c = 1, ρ = 9.60, and a 50% failure rate at
T = 12646.90 impacts, a significant improvement on both of the first two approaches.

Finally, as computed in [7], the actual expected failure time is 643600. These results are
summarized in Table 1.

6.6 Example 6: Quadrotor

We now go over an example based on a physically inspired noise model — the Dryden Wind
Turbulence model — for a quadrotor. To simplify the dynamics, we assume that yaw and pitch
are fixed and thus there is only roll. This means that the quadrotor is constrained to move only in
the x and z directions, and can rotate via an angle θ.

Because there is only one rotational degree of freedom, the four rotors can be separated into
two pairs that each act identically. If u1 represents the total force exerted by the two rotors on the

20

left, and u2 represents the total force exerted by the two rotors on the right, then we have θ̈
z̈
ẍ

 =

L
I (u2 − u1)

−g + (u1+u2) cos(θ)
m

− (u1+u2) sin(θ)
m

 ,
where L is the length of a rotor arm, m is the quadrotor mass, I is the moment of inertia, and g
is the force due to gravity.

We first apply a nominal control signal of u1 = u2 = mg
2 cos(θ) so that z̈ is nominally zero. Then

we stabilize the resulting system using LQR control. Following [4], we set L = 0.25, m = 0.486,
I = 0.00383, and g = 9.81.

For our noise model, we use the Dryden Wind Turbulence model [33], and assume that a wind
gust at a given velocity causes ẋ to be shifted by that velocity. This model takes the output of a

second-order linear-Gaussian system and multiplies it by a nonlinear term

√
V0 + ẋ

Lw
, where Lw is

a length parameter and the model is assumed to hold in the region ẋ� V0. We take V0 to be 60.0
and Lw to be 5.0. There is also a turbulence intensity term σ, which we vary from 0.1 to 1.0 for
our experiments.

The final model for the system is:

ẍ
z̈

θ̈
v̈

 =

−g tan(θ)− sin(θ)

m (u1 + u2) + σ
√

V0
Lw

(
1 + ẋ

2V0

)
·
(√

3v̇ + v V0Lw

)
cos(θ)
m (u1 + u2)
L
I (−u1 + u2)

−v V
2
0
L2
w
− 2v̇ V0Lw

+

0
0
0
1

 dw(t).

Here v is an extra state-variable added to capture the fact that the noise is itself a second-order
system.

We include a plot to demonstrate the results of the verification method — it gives the time
until the verified probability is 0.25 as a function of the turbulence intensity σ. This can be found
in Figure 4. So, for example, at a turbulence intensity of σ = 0.15, the bound on the probability
of failure is equal to 0.25 at approximately 103 seconds. Note that this is the probability of failure
given 0 initial conditions, which means that our probability bound scales linearly with time. So,
for instance, this also means that the probability of failure is equal to 0.0025 at 10 seconds.

6.7 Example 7: Room Heating

Our final example evaluates the scalability of our approach. We compare our algorithm to the
algorithm presented in Abate et al [1]. The experiment presented in [1] concerns bounding the
probability that a heating system allows any of h rooms to leave given temperature ranges. For
a heating system with h rooms, we represent the temperature of the h rooms as a vector x =
(x1, x2, . . . , xh), and consider the discrete-time system xn+1 = f(xn) + g(xn)wn with

f(x)i = xi + b(x0 − xi) + a

∑
j 6=i

xj − xi

+ cσ
(xi
α
− 1
)

(60)

g(x) = νIh×h, (61)

21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

sigma

v
e
ri
fi
e
d
 t
im

e
 (

s
)

Time to 25% Probability of Failure

Figure 4: Verified time to failure versus σ (turbulence intensity) for the quadrotor.

22

where σ is a sigmoidal function rising from 0 to 1, which we approximated as σ(y) = 0.5− 2.5y +
1.25y2 + 20y3. For our experiment we took a = 0.0625, b = 0.025, c = 0.6, x0 = 6.0, α = 19.5,
and ν = 0.25. The goal was to bound the probability of leaving the temperature region defined
by [17, 22]× [16, 23]h−1. The numbers given above are based on Abate et al.’s paper, although we
make a few simplifying assumptions to the dynamics — first, we replace a certain Bernoulli noise
source by its expectation; second, we assume symmetric between-room interactions so that there
will be an easily identifiable fixed point about which to verify stability. We also remove a one-step
lag on noise, which increases the discretization mesh of [1] by a factor of 2 per dimension.

We observe that Abate et al. are able to (using 5 bins per dimension) verify a 5-room heating
system in 11 hours on a 3.4GHz PC with 1GB of RAM. Because of the factor of 2 per dimension
that they incur, a fair comparison of runtime would be to test our SOS verification on a 7-room
heating system (the mesh size in [1] would decrease by a factor of 32 by ignoring lag, then gain a
factor of 25 when going from 5 to 7 dimensions, so that their 7-room times without lags would be
6-7 hours, as their runtime scales about quadratically with mesh size).

In this case a single SOS verification runs in an average of 17.2 seconds (our algorithm performs
several such verifications). We used a 3.4GHz PC with 24GB of RAM; we note that our PC had 12
cores, with CPU diagnostics indicating that only 4 cores were actually utilized by our computation.
We furthermore note that for a fixed degree of Taylor approximation our method scales polynomially
with dimension, whereas discretization methods scale exponentially with dimension. Our method
is therefore not only more scalable currently, it will also continue to scale well with increased
computing power.

7 Conclusion

We have presented a method for verifying stochastic nonlinear systems. However, the results here
are by no means a complete theory; there is much work left to be done. Our hope is that the
successful examples in this paper will convince others that the methods first presented in [23] can
extend usefully to complex systems for suitable choices of barrier functions. We chose exponentials
of quadratic barrier functions because the systems we had in mind were locally well-approximated
by linear systems and the noise model was Gaussian. Other applications will require different
families of barrier functions; hopefully the convex relaxations given in (3.2) and (3.4) will provide
inspiration for similar relaxations for those other families. It seems that usually one can obtain
such relaxations from simple analytical properties of the expressions in question, but the authors
do not yet have a way to make this observation rigorous.

Some interesting modifications to the dynamics would be to consider mixtures of Gaussians,
as well as switching processes, in the noise model; also to consider verification about stabilized
trajectories. A final case of interest is Gaussian noise passed through a nonlinear filter; as discussed
in the Rimless Wheel section, our method handles this case in principal, but performs poorly in
practice.

Acknowledgments

This work was supported in part by ONR MURI under grant N00014-09-1-1051.

23

References

[1] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate model checking of stochas-
tic hybrid systems. European Journal of Control, 16:624641, dec 2010.

[2] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An application of rein-
forcement learning to aerobatic helicopter flight. In Proceedings of the Neural Information
Processing Systems (NIPS ’07), volume 19, December 2006.

[3] Frederick J. Beutler. On two discrete-time system stability concepts and supermartingales.
Journal of Mathematical Analysis and Applications, 44(2):464 – 471, 1973.

[4] Bouadi, H., Bouchoucha, M., Tadjine, and M. Sliding mode control based on backstepping
approach for an uav type-quadrotor. International Journal of Applied Mathematics and Com-
puter Sciences, 4(1):12–17, 2008.

[5] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004. ISBN 9780521833783.

[6] Katie Byl and Russ Tedrake. Metastable walking on stochastically rough terrain. In Proceedings
of Robotics: Science and Systems IV, 2008.

[7] Katie Byl and Russ Tedrake. Metastable walking machines. International Journal of Robotics
Research, 28(8):1040–1064, August 1 2009.

[8] A. Charnes and W. W. Cooper. Chance-constrained programming. Management Science, 6
(1):pp. 73–79, 1959.

[9] Rick Cory and Russ Tedrake. Experiments in fixed-wing UAV perching. In Proceedings of the
AIAA Guidance, Navigation, and Control Conference. AIAA, 2008.

[10] E. B. Dynkin. Markov Processes, volume 1. Academic Press, 1965.

[11] M Grant and S Boyd. Graph implementations for nonsmooth convex programs. In V. Blondel,
S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control (tribute to M.
Vidyasagar), Lecture Notes in Control and Information Sciences, pages 95–110. Springer, 2008.

[12] M Grant and S Boyd. CVX: Matlab software for disciplined convex programming - version
1.1beta. http://cvxr.com/cvx, January 2011.

[13] Matthew R. James. Asymptotic analysis of nonlinear stochastic risk-sensitive control and
differential games. Mathematics of Control, Signals, and Systems (MCSS), 5:401–417, 1992.
10.1007/BF02134013.

[14] H. J. Kushner. On the stability of stochastic dynamical systems. PNAS, 53(1):8–12, Jan. 15
1965.

[15] HJ Kushner. Finite time stochastic stability and the analysis of tracking systems. IEEE
Transactions on Automatic Control, pages 219–227, April 1966.

[16] Johan Lofberg. Pre- and post-processing sum-of-squares programs in practice. IEEE Trans-
actions On Automatic Control, 54(5):1007–, May 2009.

24

[17] Johan Lofberg. Strictly feasible sum-of-squares solutions, Feb 2011.
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Blog.Strictly-feasible-SOS-solutions.

[18] Tad McGeer. Passive dynamic walking. International Journal of Robotics Research, 9(2):
62–82, April 1990.

[19] A. Megretski. Positivity of trigonometric polynomials. In Decision and Control, 2003. Pro-
ceedings. 42nd IEEE Conference on, volume 4, pages 3814–3817 vol.4, Dec. 2003.

[20] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and control for precise ag-
gressive maneuvers with quadrotors. In Proceedings of the 12th International Symposium on
Experimental Robotics (ISER 2010), 2010.

[21] Antonis Papachristodoulou and Stephen Prajna. Analysis of non-polynomial systems using
the sum of squares decomposition. Positive Polynomials in Control, 312/2005:23–43, 2005.

[22] Quang-Cuong Pham, Tabareau, N., Slotine, and J.-J. A contraction theory approach to
stochastic incremental stability. Automatic Control, IEEE Transactions on, 54(4):816 –820,
Apr 2009.

[23] S Prajna, A. Jadbabaie, and GJ Pappas. Stochastic safety verification using barrier certificates.
43rd IEEE Conference on Decision and Control, pages 929–934, 2004.

[24] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A. Parrilo. SOSTOOLS:
Sum of Squares Optimization Toolbox for MATLAB Users guide, 2.00 edition, June 1 2004.

[25] Stephen Prajna, Antonis Papachristodoulou, and Fen Wu. Nonlinear control synthesis by sum
of squares optimization: A Lyapunov-based approach. In Proceedings of the ASCC 2004, 2004.

[26] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, Rob Playter, and the BigDog Team. Bigdog,
the rough-terrain quadruped robot. Proceedings of the 17th World Congress, The International
Federation of Automatic Control, 2008.

[27] Alexander Shkolnik, Michael Levashov, Ian R. Manchester, and Russ Tedrake. Bounding on
rough terrain with the littledog robot. Under review, 2010.

[28] Jos F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11(1-4):625 – 653, 1999.

[29] W. Tan and A. Packard. Stability region analysis using polynomial and composite polyno-
mial Lyapunov functions and sum-of-squares programming. IEEE Transactions on Automatic
Control, 53(2):565–571, March 2008.

[30] Mark M. Tobenkin, Ian R. Manchester, and Russ Tedrake. Invariant funnels around trajectories
using sum-of-squares programming. arXiv:1010.3013 [math.DS], 2010.

[31] Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin
Morris. Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton,
FL, 2007.

25

[32] Y Yang, J Li, and G Chen. Finite-time stability and stabilization of nonlinear stochastic hybrid
systems. Journal of Mathematical Analysis and Applications, 356:338–345, 2009.

[33] Jesse C. Yeager. Implementation and testing of turbulence models for the f18-harv simulation.
Technical report, 1998.

A Proofs and Derivations

A.1 Proof of Lemma 3.1

Lemma. det(I −M) ≥ 1− Tr(M) when 0 �M � I.

Proof. By considering the eigenvalues of M , this is the same as showing that
∏n
i=1(1 − λi) ≥

1−
∑n

i=1 λi whenever 0 ≤ λi ≤ 1. Since A(1−λ) = A−Aλ ≥ A−λ ≥ B−λ whenever B ≤ A ≤ 1,
the lemma follows by induction on n (with A =

∏n−1
i=1 (1− λi), B = 1−

∑n−1
i=1 λi, and λ = λn).

A.2 Proof of Lemma 3.2

Lemma. Let p0, q0, and r0 be real numbers with r0 < 1, and let M := (1− r0)−
1
2 ep0 − eq0 . Suppose

that M ≥ 0 and

(1− r0)−
1
2 ep0(p− p0)− eq0(q − q0) ≤ δ

r ≤ r0.

Then
(1− r)−

1
2 ep − eq ≤Me

δ
M .

Proof. Since the left-hand side of (26) is increasing with r, by condition (25) it suffices to consider

the case r = r0. We can then maximize (1− r0)−
1
2 ep − eq against (24) using Lagrange multipliers.

If we do this, we get the equations

(1− r0)−
1
2 ep0 = λ(1− r0)−

1
2 ep

−eq0 = −λeq.

Dividing the first equation by the second, we get the equality

−(1− r0)−
1
2 ep0−q0 = −(1− r0)−

1
2 ep−q,

which implies that p − p0 = q − q0. If we let p − p0 = q − q0 = d, then (24) reduces to Md ≤ δ,
and the left-hand-side of (26) reduces to Med. As long as M ≥ 0, the left-hand-side of (26) is then
maximized by making d as large as possible, i.e. setting it to d = δ

M , at which point it is equal to

Me
δ
M , thus proving the result.

26

A.3 Derivation of Proposition 3.3

Applying Lemma 3.1 with M = 2gTS(n)g, we get

det(I − 2gTS(n)g)−
1
2 ef

TS(n)(S(n)−2S(n)ggTS(n))−1S(n)f − exTS(n−1)x

≤ (1− 2 Tr(gTS(n)g))−
1
2 ef

TS(n)(S(n)−2S(n)ggTS(n))−1S(n)f − exTS(n−1)x

as long as 0 � 2gTS(n)g � I. Next, applying Lemma 3.2 with p0 = q0 = δ = 0 and r0 = 2b − b2,
we get

(1− 2 Tr(gTS(n)g))−
1
2 ef

TS(n)(S(n)−2S(n)ggTS(n))−1S(n)f − exTS(n−1)x

≤ (1− 2b+ b2)−
1
2 − 1

= (1− b)−1 − 1

as long as (1 − b)−1fTS(n)(S(n) − 2S(n)ggTS(n))−1S(n)f − xTS(n − 1)x ≤ 0, 2 Tr(gTS(n)g) ≤
2b − b2, and b ≤ 1. We can thus take δ(n − 1) to be (1 − b)−1 − 1 as long as the following set of
constraints are satisfied:

0 � 2gTS(n)g � I (62)

fTS(n)(S(n)− 2S(n)ggTS(n))−1S(n)f ≤ (1− b)xTS(n− 1)x (63)

2 Tr(gTS(n)g) ≤ 2b− b2 (64)

b ≤ 1. (65)

We will now manipulate these constraints into a more manageable form. First, note that b ≤ 1
and 2 Tr(gTS(n)g) ≤ 2b − b2 together imply that 2gTS(n)g � I. In addition, S(n) � 0 implies
that 2gTS(n)g � 0, so we can drop the first constraint in favor of the simpler constraint S(n) � 0.
Second, note that, by Schur complements, (63) can be replaced with[

S(n)− 2S(n)ggTS(n) S(n)f
fTS(n) (1− b)xTS(n− 1)x

]
� 0 (66)

Next, let P (n) be a matrix such that S(n)ggTS(n) � P (n). Then we can replace (66) with the
constraint [

S(n)− 2P (n) S(n)f
fTS(n) (1− b)xTS(n− 1)x

]
� 0 (67)

On the other hand, the constraint S(n)ggTS(n) � P (n) is equivalent by Schur complements to[
I gTS(n)

S(n)g P (n)

]
� 0. Putting this all together, we can replace (63) with the set of constraints[

S(n)− 2P (n) S(n)f
fTS(n) (1− b)xTS(n− 1)x

]
� 0[

I gTS(n)
S(n)g P (n)

]
� 0

P (n) � 0.

Finally, we note that 2 Tr(gTS(n)g) ≤ 2b−b2 ⇐⇒ b2 ≤ 2b−2 Tr(gTS(n)g) ⇐⇒
[

1 b
b 2b− 2 Tr(gTS(n)g)

]
,

where the last equivalence is by Schur complements. Putting this all back into constraints (63-65),
we get Proposition 3.3.

27

A.4 Proof of Lemma 3.4

Lemma. Suppose that p(x) ≤ p0(1 + q0 − q(x)) and p0 ≥ 0. Then p(x)eq(x) ≤ p0e
q0 .

Proof. Since 1 − x ≤ e−x, 1 + q0 − q(x) ≤ eq0−q(x), so p(x) ≤ p0(1 + q0 − q(x)) ≤ p0e
q0−q(x).

Multiplying both sides by eq(x) yields p(x)eq(x) ≤ p0e
q0 .

A.5 Derivation of Proposition 3.5

Applying Lemma 3.4 with p0 = b and q0 = 0 allows us to upper-bound A JS(x, t) by b as long as

xT Ṡx+ 2xTSf + Tr(gTSg) + 2xTSggTSx ≤ b(1− xTSx). (68)

We can move terms around in (68) to get the equivalent condition 2xTSggTSx ≤ b(1 − xTSx) −
xT Ṡx− 2xTSf − Tr(gTSg), which by Schur complements is equivalent to[

1
2I gTSx

xTSg b(1− xTSx)− xT Ṡx− 2xTSf − Tr(gTSg)

]
.

This yields Proposition 3.5.

B Pseudocode

In this section, we provide pseudocode for the algorithms presenting in the main text.

28

Algorithm 1 Initialization algorithm in DT

procedure compute-S0-DT(M ,ε,TOL) . perform line search over b0, optimizing S0 at each
point

. ε and TOL control the accuracy of the line search
l← 0
r ← 1
d← ε
S∗0 , b

∗
0 ← ∅

α∗ ← −∞
while r − l > TOL do . we narrow the search range until it is smaller than some tolerance

S ← range(l, r, d) . returns numbers from l to r spaced d apart
for b0 ∈ S do

maximize
S0,P0,α

α

subject to S0 � αM[
1 b0
b0 2b0 − 2 Tr(g(0)TS0g(0))

]
� 0[

S0 − 2P0 S0F
F TS0 (1− b0)S0

]
� 0[

I g(0)TS0

S0g(0) P0

]
� 0

if α > α∗ then
α∗ ← α
S∗0 ← S0

b∗0 ← b0
end if

end for
l← max(l, b∗0 − d) . narrow the search window and increase the search granularity
r ← min(r, b∗0 + d)
d← εd

end while
return S∗0
end procedure

29

Algorithm 2 Binary search algorithm in DT

procedure compute-S-DT(M ,ε,TOL1,TOL2)
S0 ← compute-S0-DT(M, ε,TOL1) . see Algorithm 1
ρ∗ ← 0
S∗, b∗, λ∗ ← ∅
for ρ ∈ R do . R is a suitable candidate set of ρ values

cl ← 0
cr ← 1
while cr − cl > TOL2 do . binary search

cm ← cl+cr
2 . check feasibility for cm

. there is no objective to maximize since we are just checking feasibility

maximize ∅

subject to

[
1 b
b 2b− 2cm Tr(gTS0g)

]
� 0[

cmS0 − 2P cmS0f
cmf

TS0 (1− b)cmxTS0x+ λ1(x)(xTS0x− ρ)

]
� 0[

I + λ2(x)(xTS0x− ρ) cmg
TS0

cmS0g P + λ3(x)(xTS0x− ρ)

]
� 0

λ1(x), λ2(x), λ3(x) ≥ 0

if feasible then
cl ← cm
if clρ > ρ∗ then

ρ∗ ← clρ
(S∗, b∗, λ∗)← (clS0, b, [λ1, λ2, λ3])

end if
else

cr ← cm
end if

end while
end for

return (S∗, ρ∗, b∗, λ∗)
end procedure

30

Algorithm 3 Initialization algorithm in CT

procedure compute-S0-CT(M ,ε,TOL) . perform line search over b0, optimizing S0 at each
point

. ε and TOL control the accuracy of the line search
l← 0
r ← 1
d← ε
S∗0 , b

∗
0 ← ∅

α∗ ← −∞
while r − l > TOL do . we narrow the search range until it is smaller than some tolerance

S ← range(l, r, d) . returns numbers from l to r spaced d apart
for b0 ∈ S do

maximize
S0,P0,α

α

subject to S0 � αM[
1
2I g(0)TS0

S0g(0) −(b0S0 + S0F + (S0F)T)

]
� 0

Tr(g(0)TS0g(0)) ≤ b0

if α > α∗ then
α∗ ← α
S∗0 ← S0

b∗0 ← b0
end if

end for
l← max(l, b∗0 − d) . narrow the search window and increase search granularity
r ← min(r, b∗0 + d)
d← εd

end while
return S∗0
end procedure

31

Algorithm 4 Binary search algorithm in CT

procedure compute-S-CT(M ,ε,TOL1,TOL2)
S0 ← compute-S0 − CT (M, ε,TOL1) . see Algorithm 3
ρ∗ ← 0
S∗, b∗, λ∗ ← ∅
for ρ ∈ R do . R is a suitable candidate set of ρ values

cl ← 0
cr ← 1
while cr − cl > TOL2 do . binary search

cm ← cl+cr
2 . check feasibility for cm

. there is no objective to maximize since we are just checking feasibility

maximize ∅

subject to

1
2I + λ1(x)(xTS0x− ρ) cmg

TS0x
cmx

TS0g b(1− cmxTS0x)− 2cmx
TS0f

−cm Tr(gTS0g)
+λ2(x)(xTSx− ρ)

 � 0

λ1(x), λ2(x) ≥ 0

if feasible then
cl ← cm
if clρ > ρ∗ then

ρ∗ ← clρ
(S∗, b∗, λ∗)← (clS0, b, [λ1, λ2])

end if
else

cr ← cm
end if

end while
end for

return (S∗, ρ∗, b∗, λ∗)
end procedure

32

Algorithm 5 Bilinear optimization algorithm (CT only)

procedure optimizeBilinear(TOL)
(S, ρ, λ, b)← initialize() . find some initial feasible point
repeat

ρ0 ← ρ

maximize
λ,b

b

subject to λ(x) ≥ 0 1
2I+ gTSx

xTSg b(1− xTSx)− xT Ṡx− 2xTSf
−Tr(gTSg) + λ(x)(xTSx− ρ)

 � 0

(bR, λR)← (b, λ)

maximize
λ,b

− b

subject to λ(x) ≥ 0 1
2I gTSx

xTSg b(1− xTSx)− xT Ṡx− 2xTSf
−Tr(gTSg) + λ(x)(xTSx− ρ)

 � 0

(bL, λL)← (b, λ)

(b, λ)←
(
bL+bR

2 , λL+λR
2

)
maximize

S,ρ
ρ

subject to S � 0 1
2I gTSx

xTSg b(1− xTSx)− xT Ṡx− 2xTSf
−Tr(gTSg) + λ(x)(xTSx− ρ)

 � 0

until ρ−ρ0
ρ0

< TOL
return (S, ρ, λ, b)
end procedure

33

