Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers

Jacob Steinhardt, Moses Charikar, Gregory Valiant

ITCS 2018 January 14, 2018

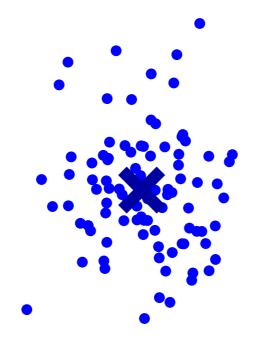
Motivation: Robust Learning

-Question-

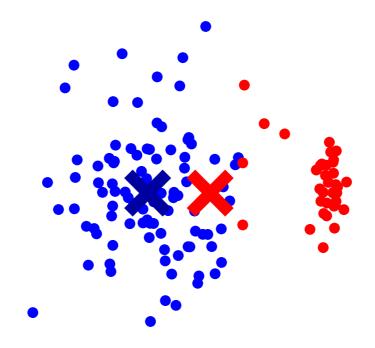
What concepts can be learned **robustly**, even if some data is arbitrarily corrupted?

-Problem

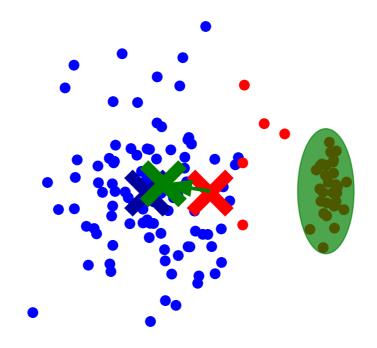
-Problem



-Problem

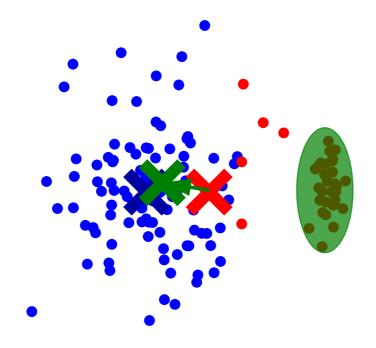


-Problem



-Problem

Given data $x_1, \ldots, x_n \in \mathbb{R}^d$, of which $(1 - \epsilon)n$ come from p^* (and remaining ϵn are arbitrary outliers), estimate mean μ of p^* .



Issue: high dimensions

Suppose clean data is Gaussian:

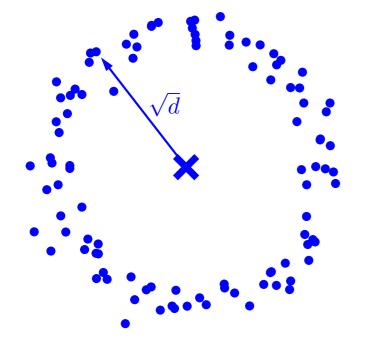
 $x_i \sim \mathcal{N}(\mu, I)$

Gaussian mean μ variance 1 each coord.

Suppose clean data is Gaussian:

 $x_i \sim \mathcal{N}(\mu, I)$

Gaussian mean μ variance 1 each coord.

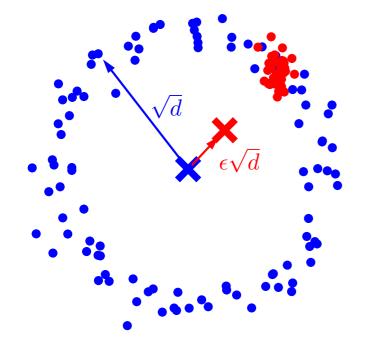


$$||x_i - \mu||_2 \approx \sqrt{1^2 + \dots + 1^2} = \sqrt{d}$$

Suppose clean data is Gaussian:

 $x_i \sim \mathcal{N}(\mu, I)$

Gaussian mean μ variance 1 each coord.

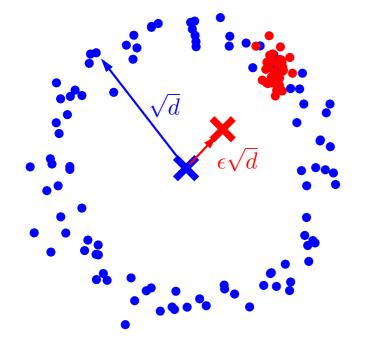


$$||x_i - \mu||_2 \approx \sqrt{1^2 + \dots + 1^2} = \sqrt{d}$$

Suppose clean data is Gaussian:

 $x_i \sim \mathcal{N}(\mu, I)$

Gaussian mean μ variance 1 each coord.



$$||x_i - \mu||_2 \approx \sqrt{1^2 + \dots + 1^2} = \sqrt{d}$$

Cannot filter independently even if know true density!

History

Progress in high dimensions only recently:

- Tukey median [1975]: robust but NP-hard
- Donoho estimator [1982]: high error
- [DKKLMS16, LRV16]: first dimension-independent error bounds

History

Progress in high dimensions only recently:

- Tukey median [1975]: robust but NP-hard
- Donoho estimator [1982]: high error
- [DKKLMS16, LRV16]: first dimension-independent error bounds
- large body of work since then [CSV17, DKKLMS17, L17, DBS17]
- many other problems including PCA [XCM10], regression [NTN11], classification [FHKP09], etc.

This Talk

-Question-

What **general** and **simple** properties enable robust estimation?

This Talk

-Question-

What **general** and **simple** properties enable robust estimation?

New information-theoretic criterion: resilience.

Resilience

Suppose $\{x_i\}_{i\in S}$ is a set of points in \mathbb{R}^d .

Definition (Resilience) A set S is (σ, ϵ) -resilient in a norm $\|\cdot\|$ around a point μ if for all subsets $T \subseteq S$ of size at least $(1 - \epsilon)|S|$, $\left\|\frac{1}{|T|}\sum_{i\in T}(x_i - \mu)\right\| \leq \sigma.$

Intuition: all large subsets have similar mean.

Main Result

Let $S \subseteq \mathbb{R}^d$ be a set of of $(1 - \epsilon)n$ "good" points.

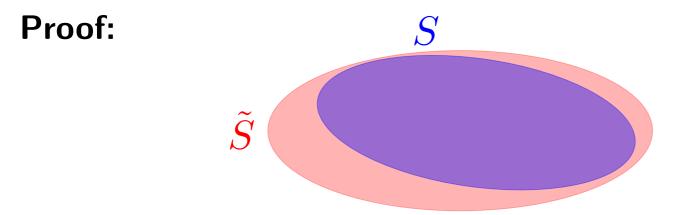
Let S_{out} be a set of ϵn arbitrary outliers.

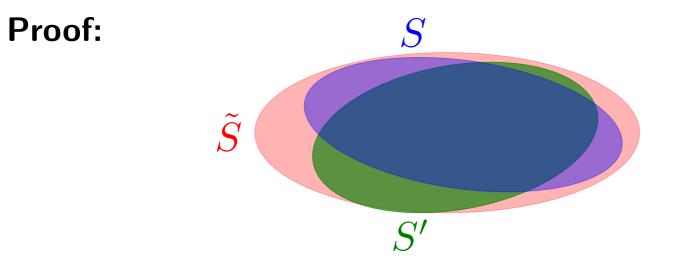
We observe $\tilde{S} = S \cup S_{out}$.

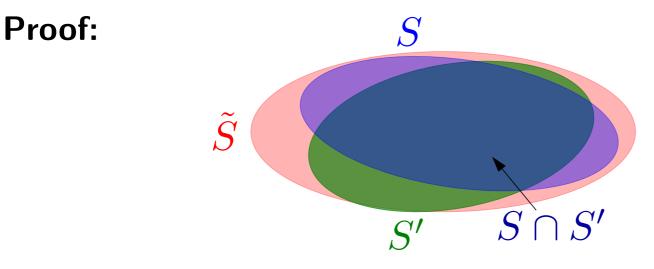
<mark>⊢Theorem</mark>-

If S is $(\sigma, \frac{\epsilon}{1-\epsilon})$ -resilient around μ , then it is possible to output $\hat{\mu}$ such that $\|\hat{\mu} - \mu\| \leq 2\sigma$.

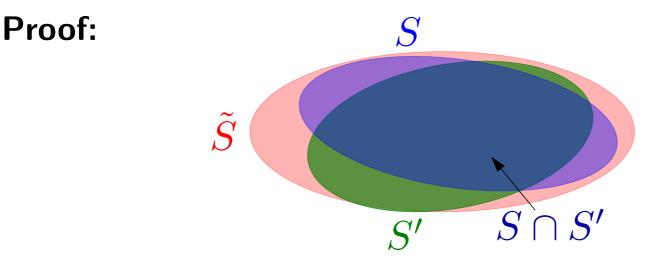
In fact, outputting the center of any resilient subset of \tilde{S} will work!







- Let $\mu_{S \cap S'}$ be the mean of $S \cap S'$.
- By Pigeonhole, $|S \cap S'| \ge \frac{\epsilon}{1-\epsilon}|S'|$.



- Let $\mu_{S \cap S'}$ be the mean of $S \cap S'$.
- By Pigeonhole, $|S \cap S'| \ge \frac{\epsilon}{1-\epsilon}|S'|$.
- Then $\|\mu' \mu_{S \cap S'}\| \leq \sigma$ by resilience.
- Similarly, $\|\mu \mu_{S \cap S'}\| \leq \sigma$.
- Result follows by triangle inequality.

-Lemma-

If a dataset has bounded covariance, it is $(\epsilon, \mathcal{O}(\sqrt{\epsilon}))$ -resilient (in the ℓ_2 -norm).

-Lemma

If a dataset has bounded covariance, it is $(\epsilon, \mathcal{O}(\sqrt{\epsilon}))$ -resilient (in the ℓ_2 -norm).

Proof: If ϵn points $\gg 1/\sqrt{\epsilon}$ from mean, would make variance $\gg 1$.

Therefore, deleting ϵn points changes mean by at most $\approx \epsilon \cdot 1/\sqrt{\epsilon} = \sqrt{\epsilon}$.

-Lemma

If a dataset has bounded covariance, it is $(\epsilon, \mathcal{O}(\sqrt{\epsilon}))$ -resilient (in the ℓ_2 -norm).

Proof: If ϵn points $\gg 1/\sqrt{\epsilon}$ from mean, would make variance $\gg 1$.

Therefore, deleting ϵn points changes mean by at most $\approx \epsilon \cdot 1/\sqrt{\epsilon} = \sqrt{\epsilon}$.

-Corollary

If the clean data has bounded covariance, its mean can be estimated to ℓ_2 -error $\mathcal{O}(\sqrt{\epsilon})$ in the presence of ϵn outliers.

-Lemma

If a dataset has bounded covariance, it is $(\epsilon, \mathcal{O}(\sqrt{\epsilon}))$ -resilient (in the ℓ_2 -norm).

Proof: If ϵn points $\gg 1/\sqrt{\epsilon}$ from mean, would make variance $\gg 1$.

Therefore, deleting ϵn points changes mean by at most $\approx \epsilon \cdot 1/\sqrt{\epsilon} = \sqrt{\epsilon}$.

-Corollary

If the clean data has bounded kth moments, its mean can be estimated to ℓ_2 -error $\mathcal{O}(\epsilon^{1-1/k})$ in the presence of ϵn outliers.

Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution π on $\{1, \ldots, m\}$.

Samples come in r-tuples, which are either all good or all outliers.

Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution π on $\{1, \ldots, m\}$.

Samples come in r-tuples, which are either all good or all outliers.

Corollary-

The distribution π can be estimated (in TV distance) to error $\mathcal{O}(\epsilon \sqrt{\log(1/\epsilon)/r})$ in the presence of ϵn outliers.

Implication: Learning Discrete Distributions

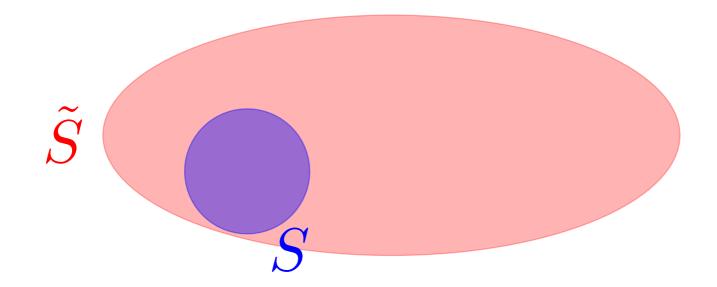
Suppose we observe samples from a distribution π on $\{1, \ldots, m\}$.

Samples come in r-tuples, which are either all good or all outliers.

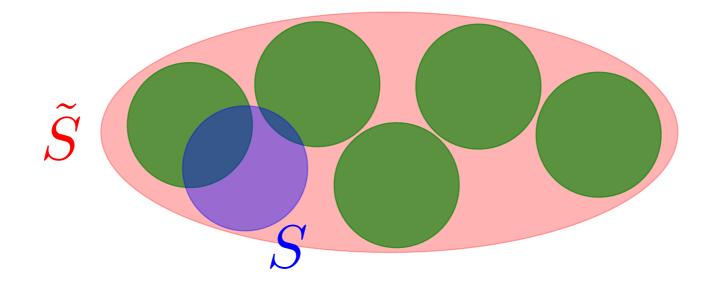
Corollary-

The distribution π can be estimated (in TV distance) to error $\mathcal{O}(\epsilon \sqrt{\log(1/\epsilon)/r})$ in the presence of ϵn outliers.

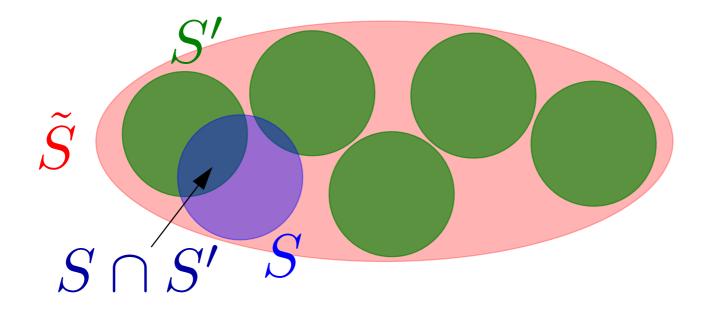
- follows from resilience in ℓ_1 -norm
- see also [Qiao & Valiant, 2018] later in this session!



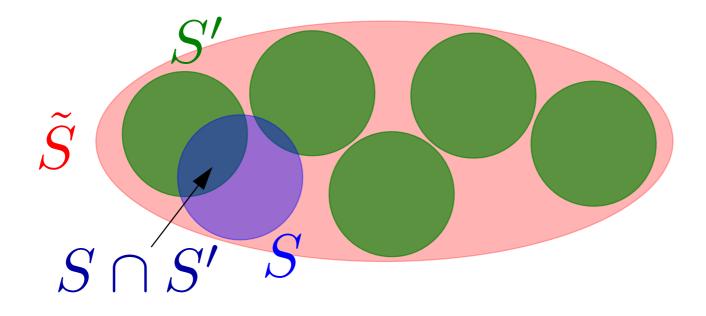
Can also handle the case where clean set has size only αn ($\alpha < \frac{1}{2}$):



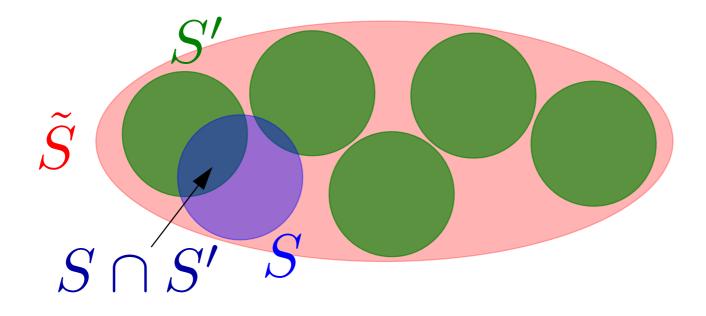
• cover \tilde{S} by resilient sets



- cover \tilde{S} by resilient sets
- at least one set S' must have high overlap with S...

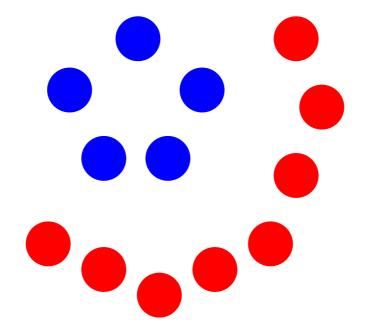


- cover \tilde{S} by resilient sets
- at least one set S' must have high overlap with S...
- ...and hence $\|\mu' \mu\| \le 2\sigma$ as before.



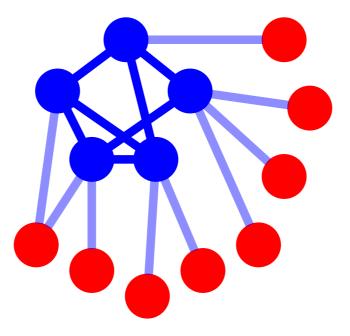
- cover \tilde{S} by resilient sets
- at least one set S' must have high overlap with S...
- ...and hence $\|\mu' \mu\| \leq 2\sigma$ as before.
- Recovery in *list-decodable* model [BBV08].

Implication: Stochastic Block Models



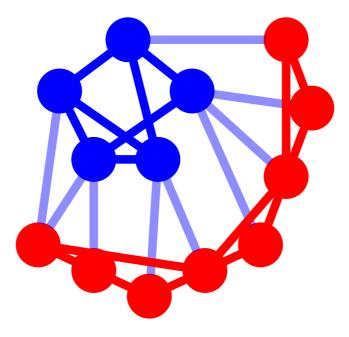
Set of $\alpha n \mod (1 - \alpha)n \mod$ vertices.

Implication: Stochastic Block Models



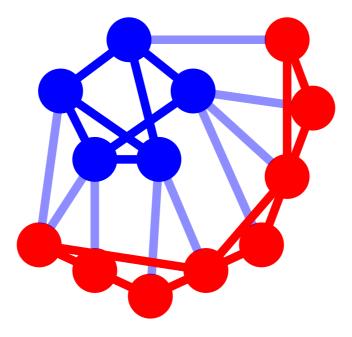
Set of $\alpha n \mod (1 - \alpha)n \mod$ vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)



Set of $\alpha n \mod (1 - \alpha)n \mod$ vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)
- bad \leftrightarrow bad: arbitrary



Set of $\alpha n \mod (1 - \alpha)n \mod$ vertices.

- good \leftrightarrow good: dense (avg. deg. = a)
- good \leftrightarrow bad: sparse (avg. deg. = b)
- bad \leftrightarrow bad: arbitrary

Question: when can good set be recovered (in terms of α, a, b)?

Using resilience in "truncated ℓ_1 -norm", can show:

-Corollary The set of good vertices can be approximately recovered whenever $\frac{(a-b)^2}{a} \gg \frac{\log(2/\alpha)}{\alpha^2}$.

Using resilience in "truncated ℓ_1 -norm", can show:

-Corollary-

The set of good vertices can be approximately recovered whenever $\frac{(a-b)^2}{a} \gg \frac{\log(2/\alpha)}{\alpha^2}$.

Matches Kesten-Stigum threshold up to log factors!

Using resilience in "truncated ℓ_1 -norm", can show:

The set of good vertices can be approximately recovered whenever $\frac{(a-b)^2}{a} \gg \frac{\log(2/\alpha)}{\alpha^2}$.

Matches Kesten-Stigum threshold up to log factors!

For planted clique (a = n, b = n/2), recover cliques of size $\Omega(\sqrt{n \log n})$.

• this is tight [S'17]

-Corollary-

Can (sometimes) turn info-theoretic into algorithmic results.

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

We show:

- for **strongly convex** norms, resilient sets can be "pruned" to have bounded covariance
- if injective norm is approximable, bounded covariance \to efficient algorithm with $\sqrt{\epsilon}$ error
- both true for $\ell_p\text{-norms!}~(p\in[2,\infty])$

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

We show:

- for **strongly convex** norms, resilient sets can be "pruned" to have bounded covariance
- if injective norm is approximable, bounded covariance \to efficient algorithm with $\sqrt{\epsilon}$ error
- both true for ℓ_p -norms! $(p \in [2,\infty])$

See [Li, 2017] and [Du, Balakrishnan, & Singh, 2017] for a non- ℓ_p -norm.

Other Results

Finite-sample bounds

Extension to SVD

Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

• based on simple pigeonhole arguments

Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

• based on simple pigeonhole arguments

Benefit: from statistical problem to algorithmic problem.

Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

• based on simple pigeonhole arguments

Benefit: from statistical problem to algorithmic problem.

Open questions:

- resilience for other problems (e.g. regression)
- efficient algos under other assumptions
- matching lower bounds?