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Motivation: Robust Learning

Question

What concepts can be learned robustly,
even if some data is arbitrarily corrupted?
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Example: Mean Estimation

Problem

Given data x1, . . . , xn ∈ Rd, of which (1 − ε)n come from p∗

(and remaining εn are arbitrary outliers), estimate mean µ of p∗.
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Example: Mean Estimation

Problem

Given data x1, . . . , xn ∈ Rd, of which (1 − ε)n come from p∗

(and remaining εn are arbitrary outliers), estimate mean µ of p∗.

Issue: high dimensions
2



Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

xi ∼ N (µ, I)︸ ︷︷ ︸
Gaussian mean µ

variance 1 each coord.
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Mean Estimation: Gaussian Example

Suppose clean data is Gaussian:

xi ∼ N (µ, I)︸ ︷︷ ︸
Gaussian mean µ

variance 1 each coord.

√
d

ε
√
d

‖xi − µ‖2 ≈
√
12 + · · ·+ 12 =

√
d

Cannot filter independently
even if know true density!
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History

Progress in high dimensions only recently:

• Tukey median [1975]: robust but NP-hard

• Donoho estimator [1982]: high error

• [DKKLMS16, LRV16]: first dimension-independent error bounds
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History

Progress in high dimensions only recently:

• Tukey median [1975]: robust but NP-hard

• Donoho estimator [1982]: high error

• [DKKLMS16, LRV16]: first dimension-independent error bounds

• large body of work since then [CSV17, DKKLMS17, L17, DBS17]

• many other problems including PCA [XCM10], regression
[NTN11], classification [FHKP09], etc.
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This Talk

Question

What general and simple properties enable robust estimation?
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This Talk

Question

What general and simple properties enable robust estimation?

New information-theoretic criterion: resilience.
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Resilience

Suppose {xi}i∈S is a set of points in Rd.

Definition (Resilience)

A set S is (σ, ε)-resilient in a norm ‖ · ‖ around a point µ if
for all subsets T ⊆ S of size at least (1− ε)|S|,∥∥∥ 1

|T |
∑
i∈T

(xi − µ)
∥∥∥ ≤ σ.

Intuition: all large subsets have similar mean.
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Main Result

Let S ⊆ Rd be a set of of (1− ε)n “good” points.

Let Sout be a set of εn arbitrary outliers.

We observe S̃ = S ∪ Sout.

Theorem

If S is (σ, ε
1−ε )-resilient around µ, then it is possible to output

µ̂ such that ‖µ̂− µ‖ ≤ 2σ.

In fact, outputting the center of any resilient subset of S̃ will work!
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Pigeonhole Argument

Claim: If S and S′ are (σ, ε
1−ε )-resilient around µ and µ′ and have size

(1− ε)n, then ‖µ− µ′‖ ≤ 2σ.
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(1− ε)n, then ‖µ− µ′‖ ≤ 2σ.

Proof:

S̃

S

S′ S ∩ S′

• Let µS∩S′ be the mean of S ∩ S′.
• By Pigeonhole, |S ∩ S′| ≥ ε

1−ε |S
′|.
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Pigeonhole Argument

Claim: If S and S′ are (σ, ε
1−ε )-resilient around µ and µ′ and have size

(1− ε)n, then ‖µ− µ′‖ ≤ 2σ.

Proof:

S̃

S

S′ S ∩ S′

• Let µS∩S′ be the mean of S ∩ S′.
• By Pigeonhole, |S ∩ S′| ≥ ε

1−ε |S
′|.

• Then ‖µ′ − µS∩S′‖ ≤ σ by resilience.

• Similarly, ‖µ− µS∩S′‖ ≤ σ.
• Result follows by triangle inequality.
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Implication: Mean Estimation

Lemma

If a dataset has bounded covariance, it is (ε,O(
√
ε))-resilient

(in the `2-norm).
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Implication: Mean Estimation

Lemma

If a dataset has bounded covariance, it is (ε,O(
√
ε))-resilient

(in the `2-norm).

Proof: If εn points � 1/
√
ε from mean, would make variance � 1.

Therefore, deleting εn points changes mean by at most ≈ ε ·1/
√
ε =
√
ε.

Corollary

If the clean data has bounded kth moments, its mean can be
estimated to `2-error O(ε1−1/k) in the presence of εn outliers.

9



Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution π on {1, . . . ,m}.

Samples come in r-tuples, which are either all good or all outliers.
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Implication: Learning Discrete Distributions

Suppose we observe samples from a distribution π on {1, . . . ,m}.

Samples come in r-tuples, which are either all good or all outliers.

Corollary

The distribution π can be estimated (in TV distance) to error
O(ε

√
log(1/ε)/r) in the presence of εn outliers.

• follows from resilience in `1-norm

• see also [Qiao & Valiant, 2018] later in this session!
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A Majority of Outliers

Can also handle the case where clean set has size only αn (α < 1
2 ):

S̃

S
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A Majority of Outliers

Can also handle the case where clean set has size only αn (α < 1
2 ):

S̃

S′

SS ∩ S′

• cover S̃ by resilient sets

• at least one set S′ must have high overlap with S...

• ...and hence ‖µ′ − µ‖ ≤ 2σ as before.

• Recovery in list-decodable model [BBV08].
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Implication: Stochastic Block Models

Set of αn good and (1− α)n bad vertices.
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Implication: Stochastic Block Models

Set of αn good and (1− α)n bad vertices.

• good ↔ good: dense (avg. deg. = a)

• good ↔ bad: sparse (avg. deg. = b)

• bad ↔ bad: arbitrary

Question: when can good set be recovered (in terms of α, a, b)?
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Implication: Stochastic Block Models

Using resilience in “truncated `1-norm”, can show:

Corollary

The set of good vertices can be approximately recovered when-

ever (a−b)2
a � log(2/α)

α2 .
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Implication: Stochastic Block Models

Using resilience in “truncated `1-norm”, can show:

Corollary

The set of good vertices can be approximately recovered when-

ever (a−b)2
a � log(2/α)

α2 .

Matches Kesten-Stigum threshold up to log factors!

For planted clique (a = n, b = n/2), recover cliques of size Ω(
√
n log n).

• this is tight [S’17]
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Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.
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Algorithmic Results

Can (sometimes) turn info-theoretic into algorithmic results.

Most existing algorithmic results rely on bounded covariance.

We show:

• for strongly convex norms, resilient sets can be “pruned” to have
bounded covariance

• if injective norm is approximable, bounded covariance → efficient
algorithm with

√
ε error

• both true for `p-norms! (p ∈ [2,∞])

See [Li, 2017] and [Du, Balakrishnan, & Singh, 2017] for a non-`p-norm.
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Other Results

Finite-sample bounds

Extension to SVD
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Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

• based on simple pigeonhole arguments
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Summary

Information-theoretic criterion yielding (tight?) robust recovery bounds.

• based on simple pigeonhole arguments

Benefit: from statistical problem to algorithmic problem.

Open questions:

• resilience for other problems (e.g. regression)

• efficient algos under other assumptions

• matching lower bounds?
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