•In hierarchical models, we need a distribution over the latent parameters at each node

•Common solution: recursively draw from a

distribution such as a Dirichlet process, beta process, Pitman-Yor process, etc.

•We show that for DP, BP, and GammaP, this won't work for deep hierarchies

•But!...Pitman-Yor is okay

Pathologies of the Gamma Distribution for Small Parameters

•For small settings of the parameters, samples from a gamma distribution can end up very close to zero. •Lemma 1: If $y \sim Gamma(cx,c)$, and $cx \leq 1$, then

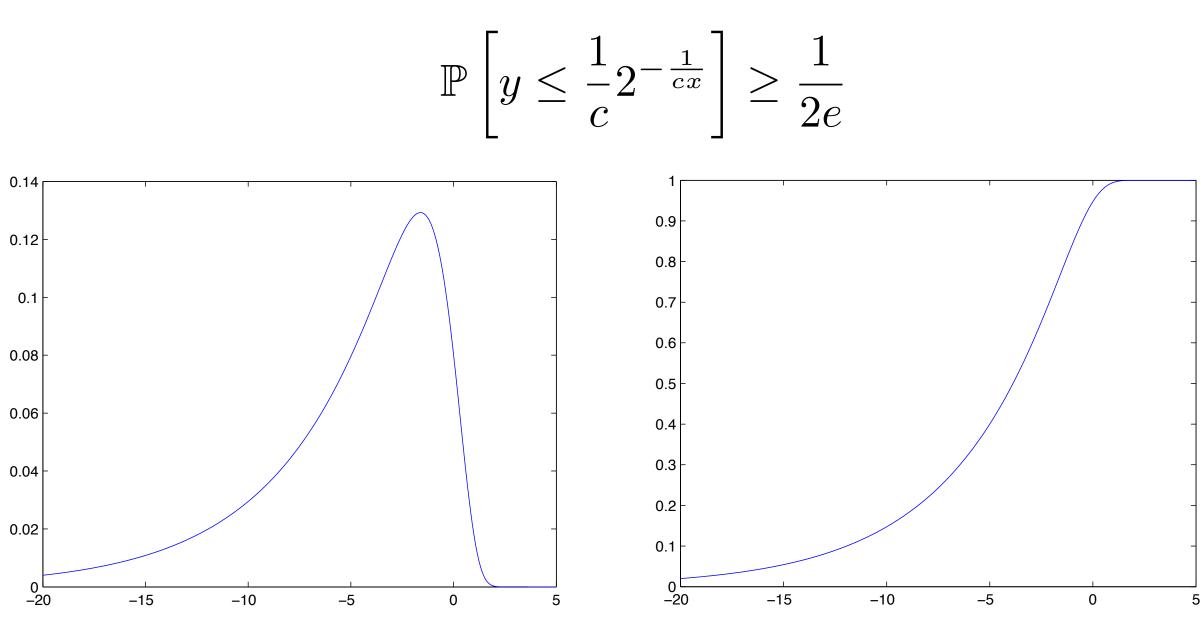


Figure 1: The pdf (left) and cdf (right) of log(Y), where $Y \sim$ Gamma(0.2,1.0). Note the relatively large amount of probability mass placed on values as small as exp(-20).

•So, we should avoid choosing such small parameters. But for deep hierarchies, this turns out to be unavoidable!

•Gamma, beta, and Dirichlet sequences all decay towards 0 or 1 at a rate governed by a **tower of exponentials:** 1/e^(e^(e^(e^(...)))).

Why Call This Behavior Pathological?

•<u>Practically</u>: if the parameters converge extremely rapidly, then posterior inference is extremely sensitive to parameter values deep in the tree, which are too small to represent accurately on a computer

•The difference between a parameter value of 0, $10^{-100000000}$, and 10^{-100} matters significantly to the conditional distribution of a parameter 3 levels up •<u>Philosophically</u>: as Bayesians, we would never report confidences as high as exp(exp(...(1))), so ours models should not, either.

Pathological Properties of Deep Bayesian Hierarchies Jacob Steinhardt and Zoubin Ghahramani

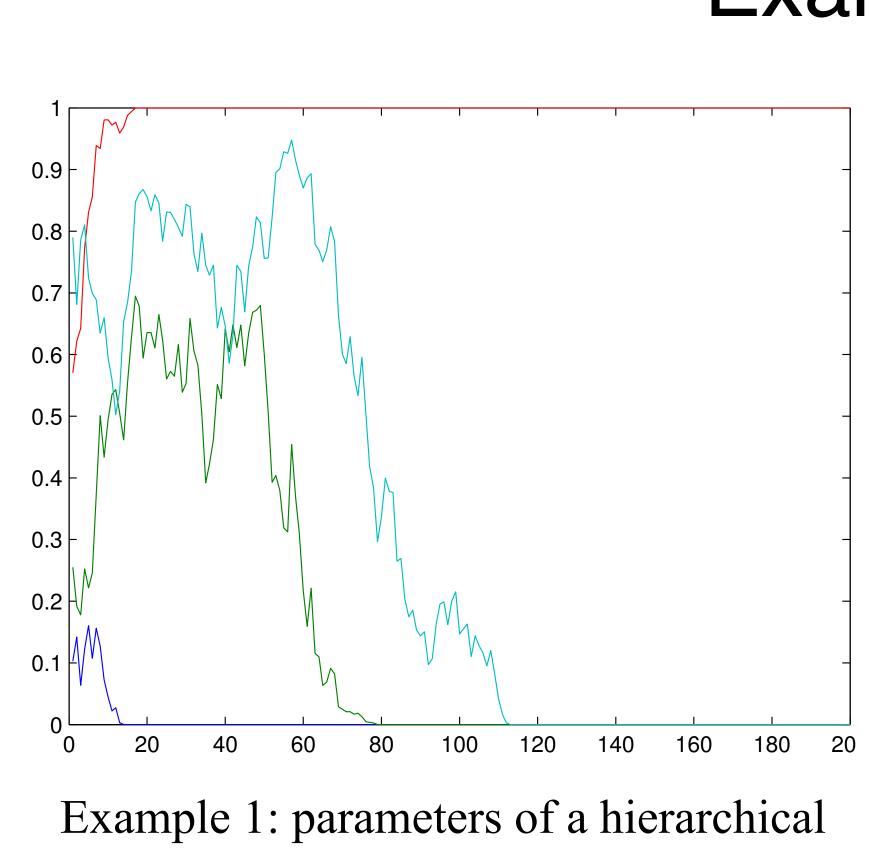
Convergence of Martingale Sequences •Consider the following sequences (thought of as parameters on a path down a hierarchy):

 $\theta_{n+1} \mid \theta_n \sim \mathrm{DP}(c\theta_n),$ $\theta_{n+1} \mid \theta_n \sim \operatorname{GammaP}(c\theta_n),$ $\theta_{n+1} \mid \theta_n \sim \mathrm{BP}(c\theta_n),$ $\theta_{n+1} \mid \theta_n \sim \mathrm{PYP}(c\theta_n)$

•All have the property that $E[\theta_{n+1} | \theta_n] = \theta_n$. •Called the *martingale property*

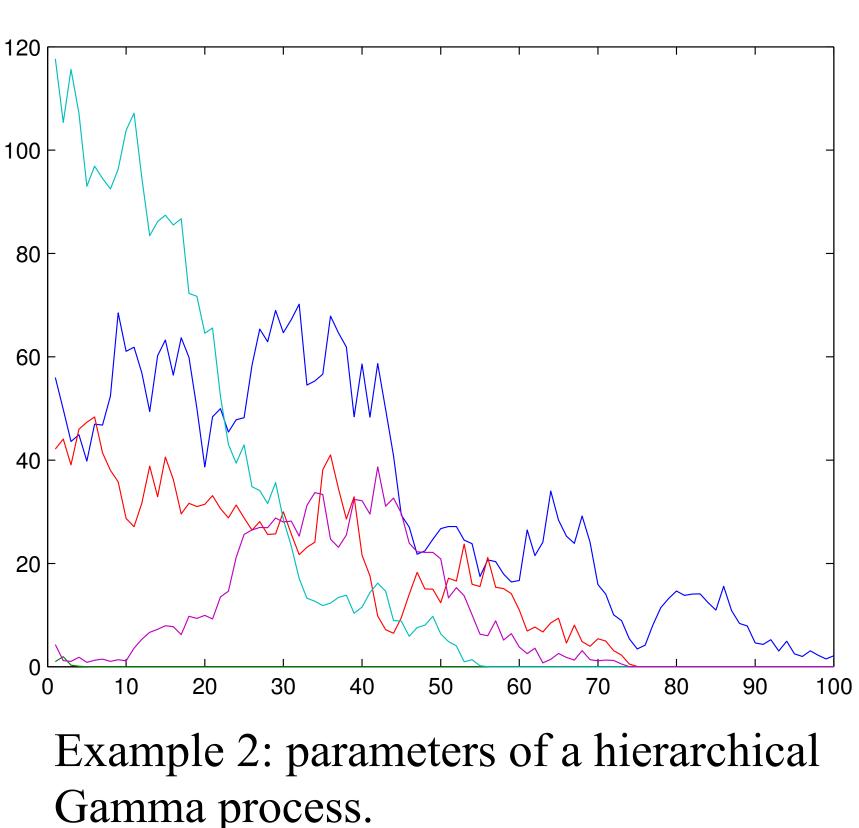
•Philosophically desirable because it means that information is preserved as we move down the hierarchy

•Theorem (Doob): All non-negative martingale sequences have a limit with probability 1.



 $\theta_{n+1} \mid \theta_n \sim \text{Beta}(50\theta_n, 50(1-\theta_n))$

Beta process.



Proving That the Decay Rate is a Tower of Exponentials

•**Theorem:** If $x_{n+1} \sim \text{Gamma}(c_n x_n, c_n)$, where $\{c_n\}$ is bounded, then $x_k \leq (\exp)^M(1)$ with probability 1- ϵ , where k = bM and b depends only on ε .

•Note: (exp)^M means exponentiation composed M times

•Proof sketch: $x_{n+1} \ll x_n$ with non-negligible probability by Lemma 1, but the martingale property together with Markov's inequality bounds the probability that x_{n+1} is ever more than a constant greater than x_{n.}

•Similar convergence properties (tower of exponentials) for Beta and Dirichlet.

Computing the Limit

•The limiting variance of the distributions in a martingale must be 0, which implies:

• θ converges to a single atom (DP and PYP)

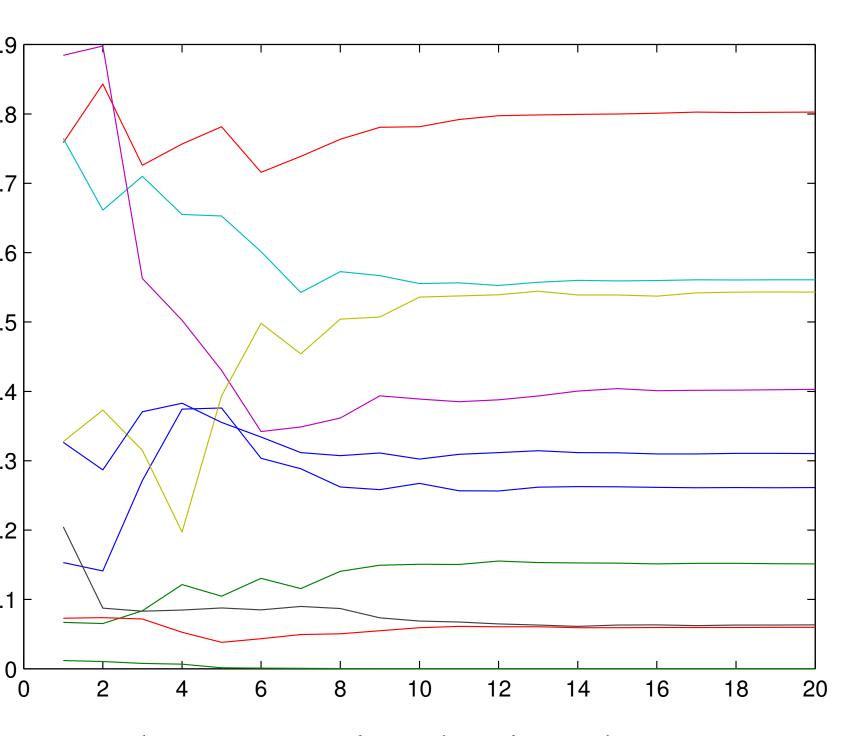
•All masses converge to 0 or 1 (beta process)

• θ converges to 0 (gamma process)

•DP, BP, and GammaP all involve draws from a gamma random variable, so we will necessarily run into the pathology described in Lemma 1! •See Example 3 for a martingale that can converge to an arbitrary value in [0,1] (also used in Solution

Examples of Martingale Sequences

 $\mathbf{x}_{n+1} \mid \mathbf{x}_n \sim \text{Gamma}(\mathbf{x}_n, 1)$



Example 3: a martingale given by $\theta_n = \alpha_n / (\alpha_n + \beta_n)$, where: $\alpha_{n+1} \mid \alpha_n \sim \alpha_n + \text{Gamma}(\alpha_n, 1),$ $\beta_{n+1} \mid \beta_n \sim \beta_n + \text{Gamma}(\beta_n, 1).$ This construction can be used to rectify

the problems with HBPs and HDPs.

Naive Solution: Mixing with Noise

- •Break martingale property and take, e.g., $\theta_{n+1} \sim DP$ $(c[(1-\varepsilon)\theta_n + \varepsilon\mu_0])$, where μ_0 is some global base measure
- •Issue: with N atoms, μ_0 places mass 1/N on some atom, so DP has at least one parameter as small as $c\epsilon/N$
- •Even more trouble with infinitely many atoms •Forgets information after 1/ε steps

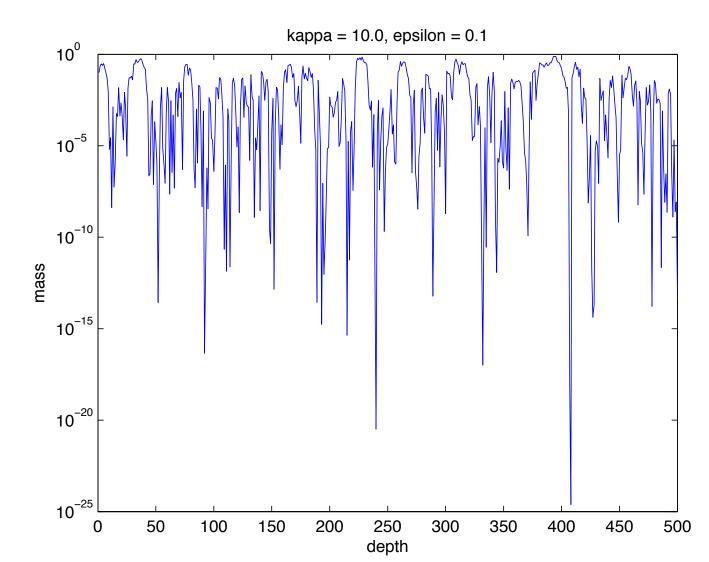


Figure 2: The mass assigned to an atom for a hierarchical Dirichlet process with noise mixed in. Here we have parameters c = 10.0, $\varepsilon = 0.1$, and μ_0 a uniform distribution over 10 atoms.

Solution 1: Pitman-Yor Processes

•Pitman-Yor processes have the following consistency property: if $G_1 | G_0 \sim PYP(\alpha, d_0, G_0)$, and $G_2 | G_1 \sim PYP(\alpha d_1, d_1, G_1)$, then $G_2 | G_0 \sim PYP$ $(\alpha d_1, d_0 d_1, G_0).$

•In general, $G_n | G_0 \sim PYP(\alpha d_1...d_n, d_0...d_n, G_0)$. If $G_0(\{p\}) = \varepsilon$, then $G_n(\{p\})$ is approximately

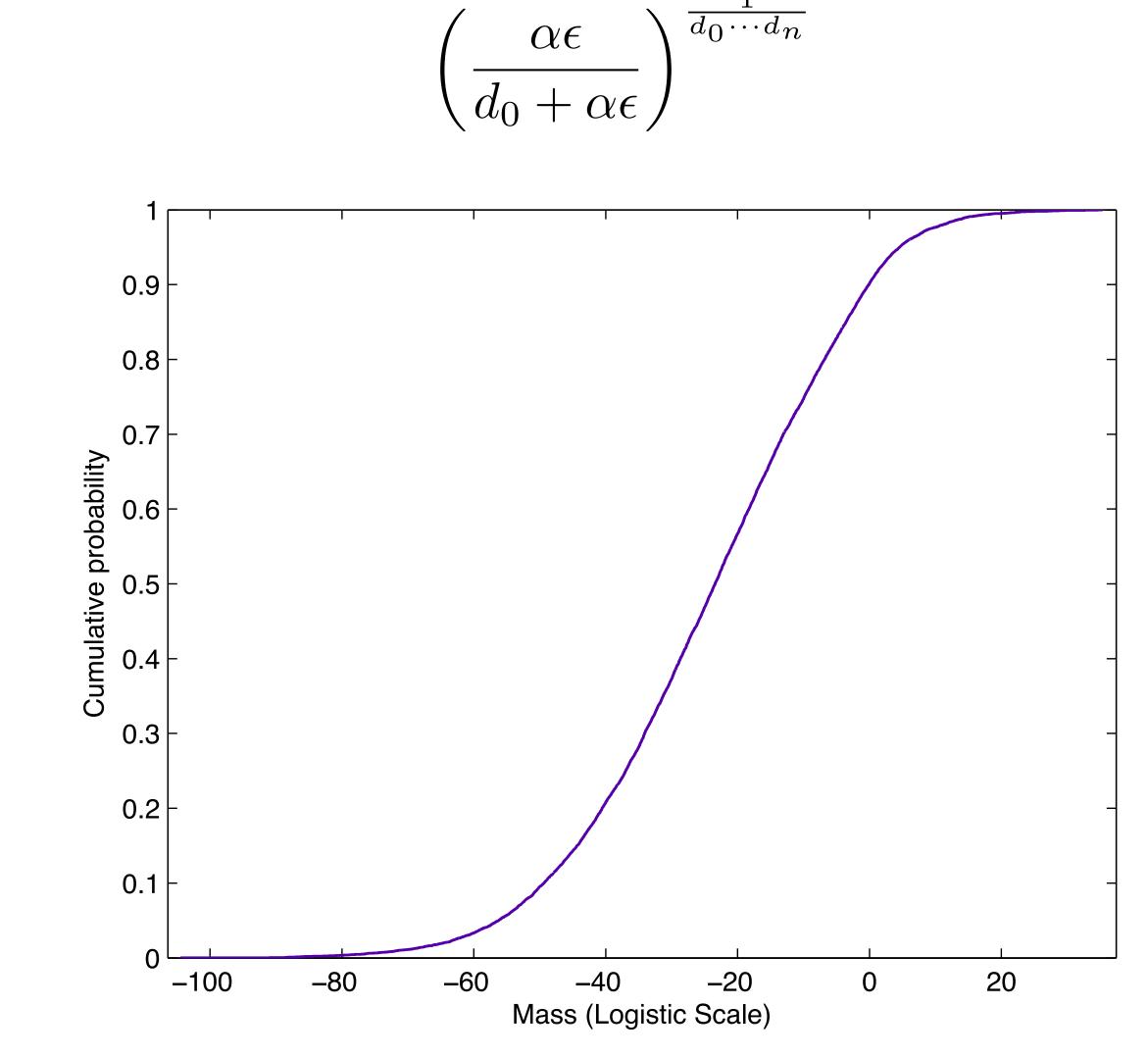


Figure 3: The cdf of the mass placed on an atom of base mass 0.1, for a draw from PYP(0.1, 0.05).

Solution 2: Adding Inertia

•Instead of $x_{n+1} \sim Gamma(c_n x_n, c_n)$, have, e.g., $d_n \sim Gamma(c_n x_n, c_n), and x_{n+1} = (1-a_n)x_n + a_n d_n.$ •Still a martingale, even for Dirichlet •Rate of decay controlled by the sequence a_n

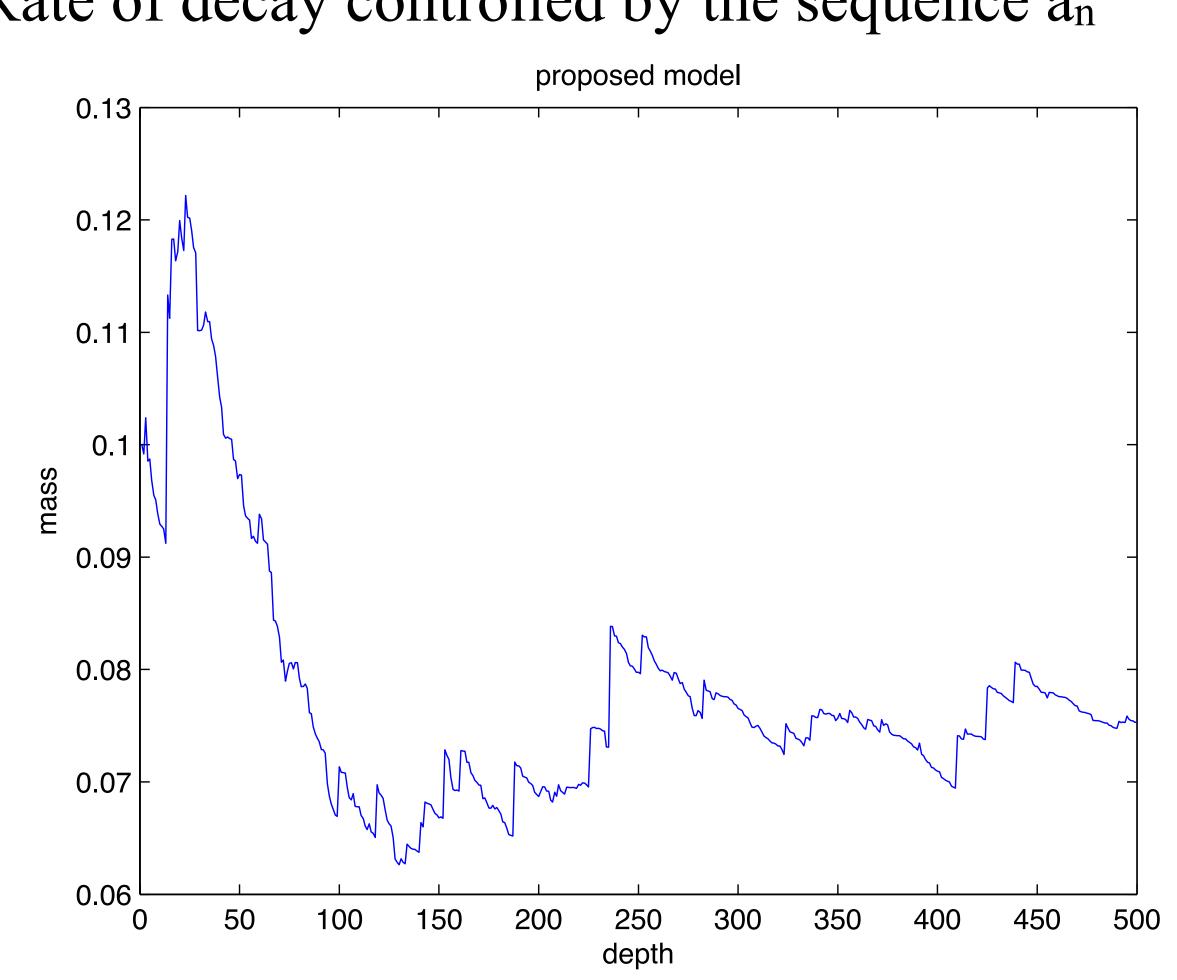


Figure 4: the mass of an atom on an inertia-added hierarchical Beta process. The sequence θ_n is generated as:

 $\alpha_{n+1} = \alpha_n + Gamma(\alpha_n / \theta_n, 5)$ $\beta_{n+1} = \beta_n + Gamma(\beta_n / \theta_n, 5)$ $\theta_{n+1} = \alpha_{n+1}/(\alpha_{n+1} + \beta_{n+1})$