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There has been much interest lately in combining nonparametric distributions together to form a
hierarchy (Neal, 2003; Teh et al., 2004; Thibaux and Jordan, 2007; Thibaux, 2008; Blei et al., 2010;
Adams et al., 2010; Knowles and Ghahramani, 2011). A common theme in most of these models is
to sample a gamma process (or some related process such as a Dirichlet or beta process) recursively
at each level with mean given by the parent. We show that this strategy leads to severe pathologies
in the generative model — for instance, in a hierarchical Dirichlet process, all of the mass converges
to a single atom, and the total mass on all other atoms decays at a rate of
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where the height of the tower of exponentials is proportional to the depth of the hierarchy; hierar-
chical beta and gamma processes act similarly. Such behavior is highly undesirable from a practical
perspective. It also breaks the Bayesian commitment to writing down priors that reflect our beliefs,
since surely no one would expect their model parameters to decay so quickly. Even worse, poste-
rior predictions at higher levels of the hierarchy end up being sensitive to miniscule variations in
parameters deeper in the hierarchy, which is again undesirable, both practically and philosophically.

While the most extreme form of these pathologies (the decay rate given by a tower of exponentials)
appears to be previously undiscussed in the literature, the simpler phenomenon of decaying to a
single atom has been noticed (Adams et al., 2010). A common strategy for fixing this problem
is to mix the distribution over each parameter with some base measure. For instance, the latent
parameters of a hierarchical Dirichlet process (Teh et al., 2004) are usually generated using the
relationship θc ∼ DP(κθv), where θv is the parameter at a node v, θc is the parameter at its child,
DP stands for Dirichlet process, and κ is the concentration parameter. To prevent θ from converging
to an atom for deep hierarchies, one may instead use the relationship θc ∼ DP(κ[(1− ε)θv + εθ0]),
where θ0 is some global base measure. We show that while these models avoid some of the worst of
our exhibited pathologies, they are still unsuitable for a large variety of situations.

We note again that while the preceding two paragraphs used the hierarchical Dirichlet process as
an example, our analysis is not limited to the Dirichlet process. We use general techniques based
on martingales, employing Doob’s martingale convergence theorem to demonstrate convergence to
an atom and using more refined techniques to compute the actual rate of convergence as well as to
analyze the case where the distribution is mixed with some base measure. These techniques allow
us to show that both hierarchical gamma and beta processes also exhibit pathological behavior very
similar to that of the Dirichlet process.

Having identified problems common across most of the existing hierarchical model classes, and
having shown that the most straightforward solution is unsatisfactory, we then propose two solutions
of our own, and analyze their pros and cons. Our first solution is a fairly general construction such
that the parameters do not converge to a single atom. This is particularly desirable in situations
such as topic modeling, where the leaves of the hierarchy correspond to topics, which inherently
induce a distribution over words rather than representing a single word (in this case the words are
the atoms of the distribution). In some situations, however, convergence to an atom may actually
be desirable, for instance if the leaves represent a single datum and we want to allow subtrees to
contain information that is as specific as necessary. We therefore also show how to replace Dirichlet
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Figure 1: Sampled values of the mass of an atom in a hierarchical Dirichlet process as a function
of depth. Top-left: a standard hierarchical Dirichlet process with κ = 10.0, ε = 0.1. Note that
the mass spends a lot of time near zero. Top-right: our first proposed change to the hierarchical
Dirichlet process. Note that the mass now converges to a nonzero value. Bottom-left: the top-left
graph on a semilogarithmic scale, which demonstrates that the mass regularly drops to values below
10−7. Bottom-right: a demonstration of what happens if we just use the model θc ∼ DP(κθv) (in
other words, if we set ε to zero). We only show up to a depth of 8 because at higher depths the mass
is smaller than 10−308 and therefore rounded to 0 on a computer.

processes with a suitable parameterization of the Pitman-Yor process (Gasthaus and Teh, 2011),
such that the parameters converge to a single atom at a controlled rate. This parameterization has
the further advantage that it is the marginal distribution of a continuous-time stochastic process, and
can therefore be incorporated into the framework of Dirichlet diffusion trees (Neal, 2003; Knowles
and Ghahramani, 2011).
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