Flexible Martingale Priors for Deep Hierarchies

Jacob Steinhardt and Zoubin Ghahramani

Summary	Motivation	Review: The nCRP
•We present a new family of Bayesian hierarchical models based on the nested Chinese restaurant	•Priors over tree structures are crucial for performing Bayesian hierarchical modeling	•The nested Chinese restaurant process, or nCRP, is a prior for Bayesian hierarchical models
process, and show that every completely exchangeable hierarchical model can be represented as a member of this family	•To date, all proposals for priors over discrete trees have undesirable properties	•Each datum is associated with a path down the tree, as shown below (each of the numbers indicates a datum)
•We do this by giving a criterion (the <i>martingale criterion</i>) that allows substantial generalization of the nested Chinese restaurant process beyond topic models	 Tree-structured stick-breaking has a constant depth under the prior Nested Chinese restaurant processes are hard to extend beyond topic models Dirichlet diffusion trees are designed for 	
•Using this criterion, we construct infinitely deep hierarchical Dirichlet and beta processes	 continuous, not discrete, data To flexibly learn the structure of models such as hierarchical Dirichlet and beta processes, we need something better 	
•Our construction circumvents issues present in the tree-structured stick-breaking model	•Our solution: build machinery to extend the nCRP	•If X is a datum and its path has reached v, the probability that it continues to a child c of v is

•Our solution: build machinery to extend the nCRP

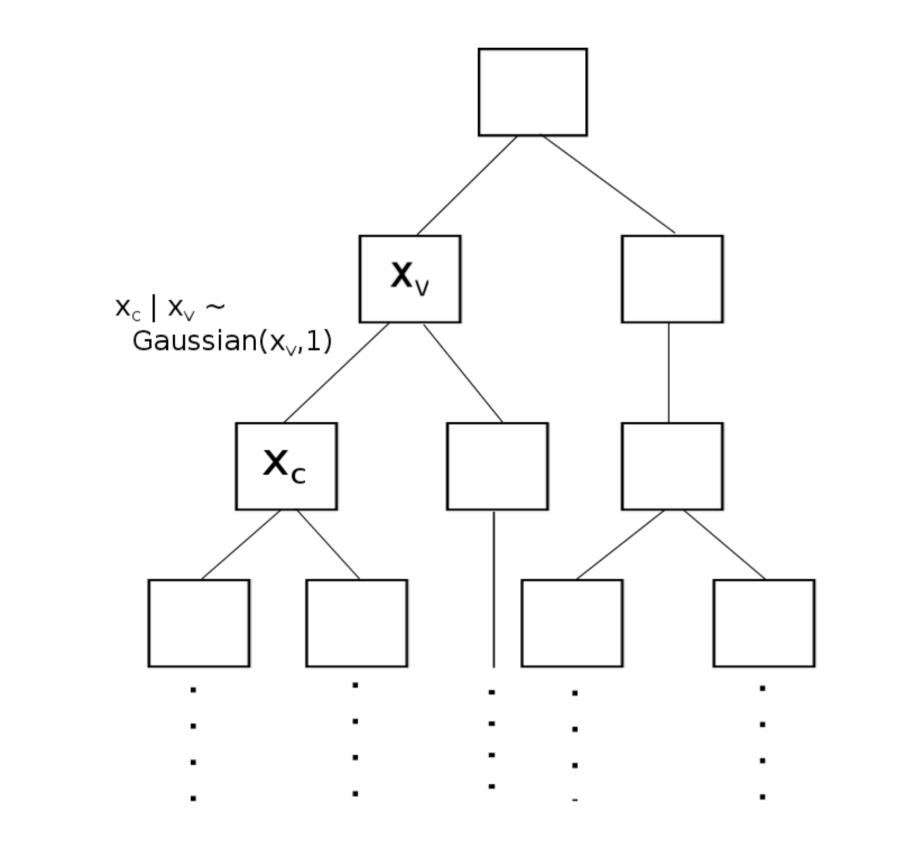
to these models

•The distribution over X given its path depends only on the latent parameters along the path

given by a Chinese restaurant process

Example: An Infinite Random Walk

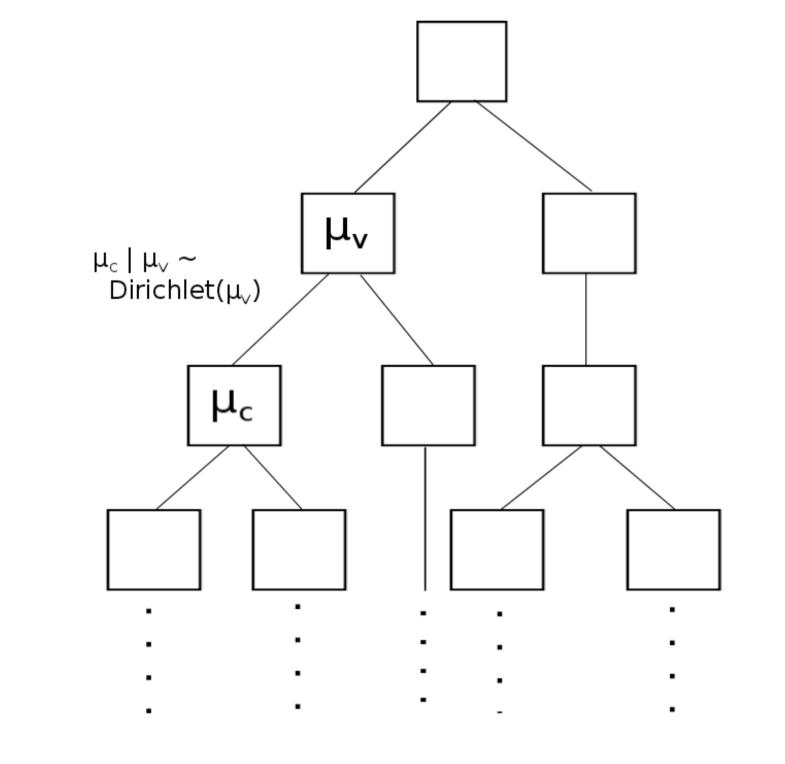
•Suppose that each node v contains a real number x_v and that for a child c of v, the distribution for x_c given x_v is $N(x_v, 1)$



•Then the marginal distribution for x_v if v is at depth d is N(0,d)

Example: An Infinite Hierarchical Dirichlet Process

•Suppose that each node v contains a probability vector μ_v over 3 outcomes {a,b,c}, and that for a child c of v, the distribution for μ_c given μ_v is Dirichlet($\mu_v(a), \mu_v(b), \mu_v(c)$)



•Then we can show that $\mu_v(x)$ converges to either 0 or 1 for each x

The Martingale Criterion

•Both for the random walk and the hierarchical Dirichlet process, we have $E[\theta_c | \theta_v] = \theta_v$, where θ_v is the collection of parameters at node v

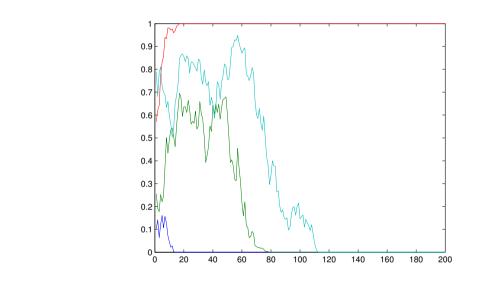
•This condition is called the *martingale criterion* •In general, ask that $E[f(\theta_c) | \theta_v] = f(\theta_v)$ for some f

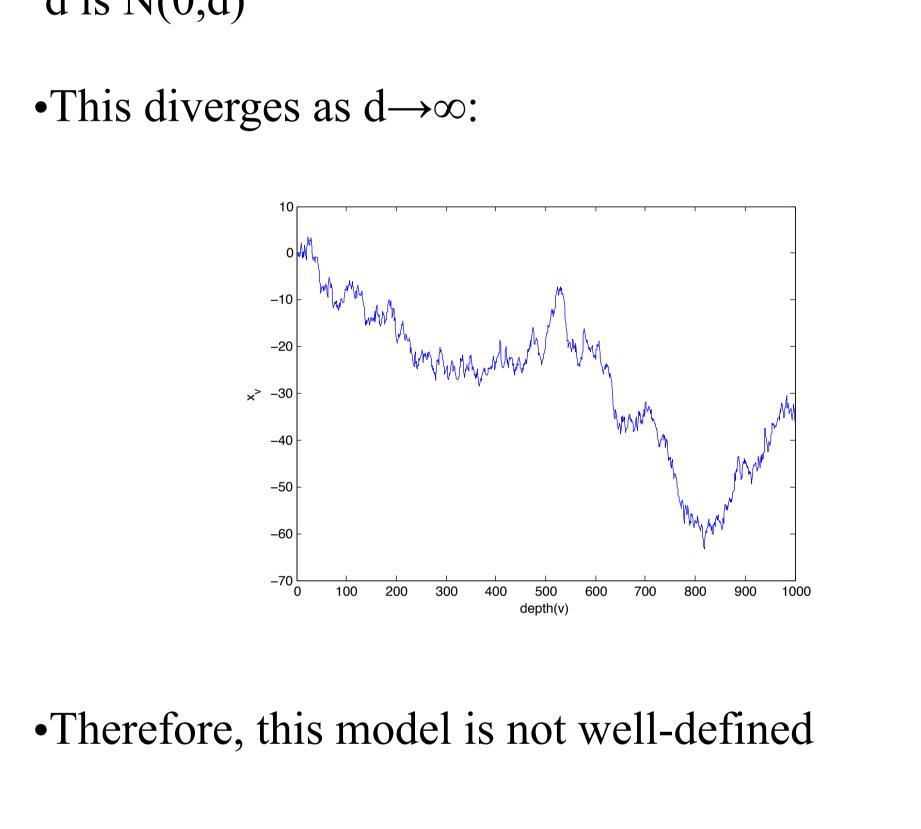
•Theorem (Doob): All non-negative martingale sequences have a limit with probability 1.

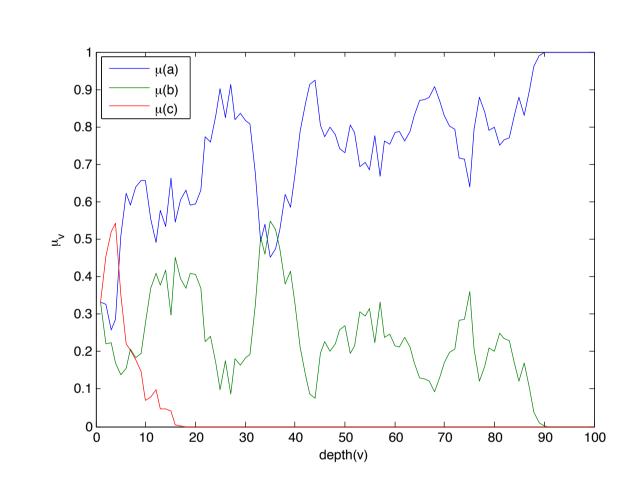
•Corollary: The infinite HDP converges. Furthermore, since the limiting variance for μ_c given μ_v must be 0, all the mass of μ_v concentrates on a single atom as the depth approaches ∞ .

•**Remark:** The infinite random walk is not nonnegative, which is why Doob's theorem does not apply.

•Examples of martingales:

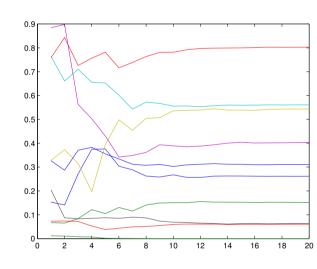






- •Therefore, μ_v converges as the depth approaches ∞
- •So, this defines a valid infinitely deep hierarchical Dirichlet process

Ex. 1: Parameters of a hierarchical Beta process. $\theta_{d+1} \mid \theta_d \sim \text{Beta}(50\theta_d, 50(1-\theta_d))$



Ex. 2: A martingale given by $\theta_d = \alpha_d / (\alpha_d + \beta_d)$, where $\alpha_{d+1} \mid \alpha_d \sim \alpha_d + \text{Gamma}(\alpha_d, 1),$ $\beta_{d+1} \mid \beta_d \sim \beta_d + \text{Gamma}(\beta_d, 1).$

General Construction

•Take any desired prior over infinite trees (such as the nCRP), and let θ_v denote the latent parameter at node v

•Let $\theta_c \mid \theta_v \sim G(\theta_v)$ such that $E[f(\theta_c) \mid \theta_v] = f(\theta_v)$ for some non-negative function f

•For a datum X associated with a path $v_1, v_2, ...,$ define $\varphi(X)$ as $\phi(X) = \lim_{d \to \infty} f(\theta_{v_d})$ •By Doob's theorem, $\varphi(X)$ exists

Universality

•A hierarchical model is *completely exchangeable* if, for a node c with parent v, the distribution for θ_c depends only on θ_v and the depth of c in the tree

•Theorem: for any completely exchangeable hierarchical model, there exists an alternate set of latent parameters $\tau_v \in T$ of at most countable dimension, and a function $f: T \rightarrow [0,1]^{\infty}$ such that $E[f(\tau_c) \mid \tau_v] = f(\tau_v)$

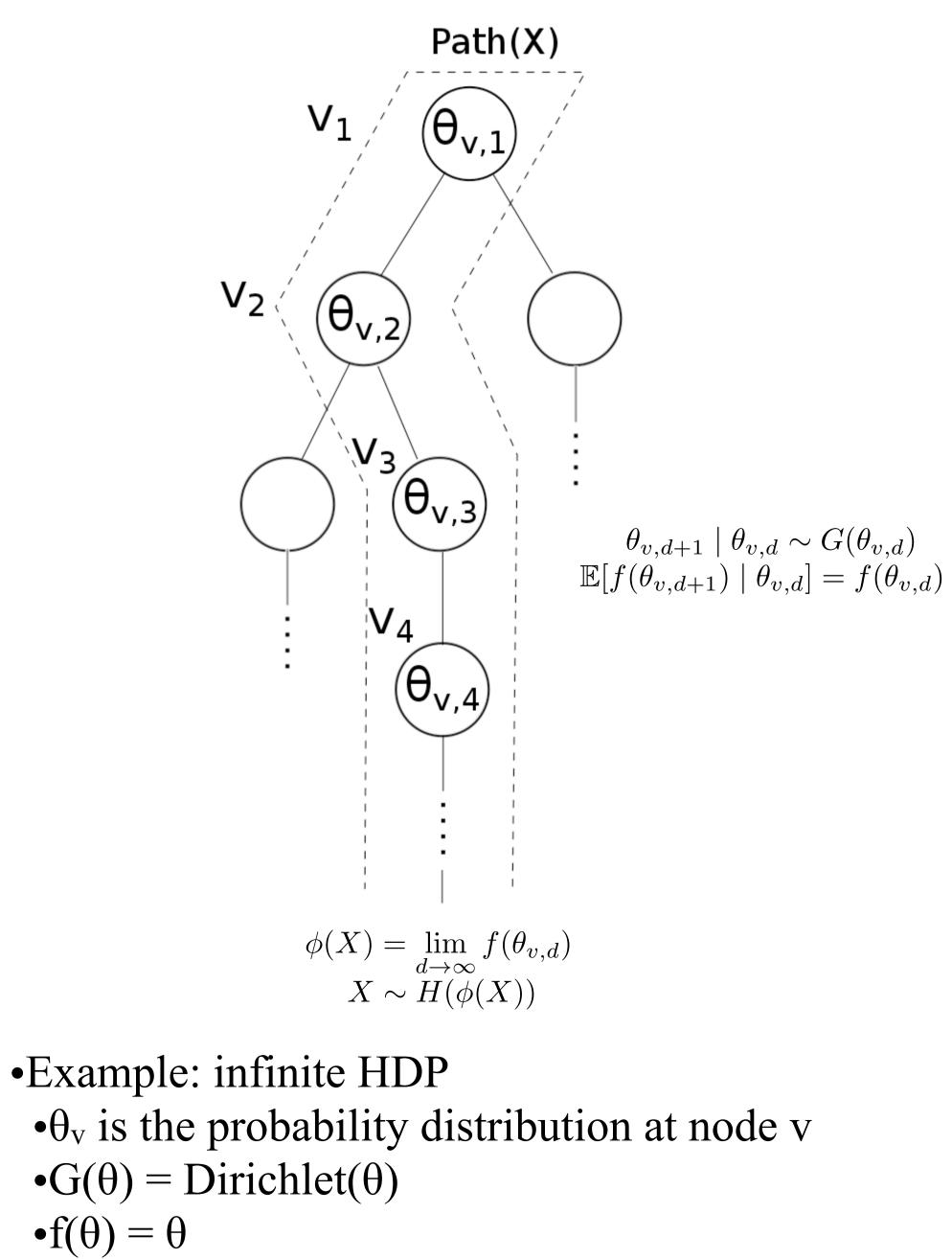
•Therefore, every completely exchangeable model can be realized using our construction •But the reparameterization in terms of τ might be inconvenient computationally

Comparison to Tree-Structured Stick Breaking

•The main alternative proposal for Bayesian hierarchies is tree-structured stick-breaking

- •To demonstrate the desirability of our construction, we perform an empirical comparison of the nCRP and TSSB
 - •A theoretical analysis is given in the paper
- •Comparison 1: depth of the tree as a function of

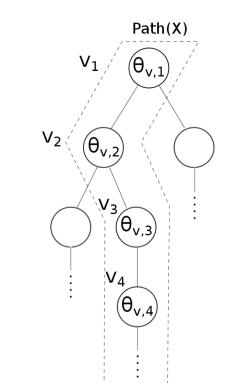
•Sample X from some distribution $H(\varphi(X))$



• $H(\phi) = Multinomial(\phi)$

Tractability of Inference

•To perform inference, we need to compute the posterior over $\varphi(X)$ given just some prefix v₁,v₂,...,v_d of the path for X

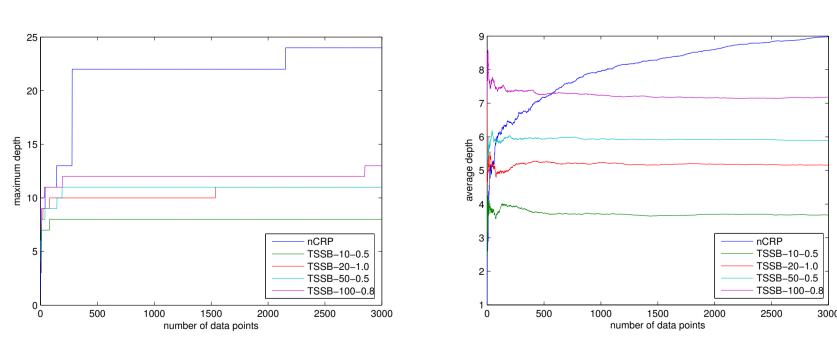


To perform efficient inference, we need to sample $\phi(X) \mid \theta_{v,4}$.

•If X ~ H($\phi(X)$), just need sufficient statistics for H

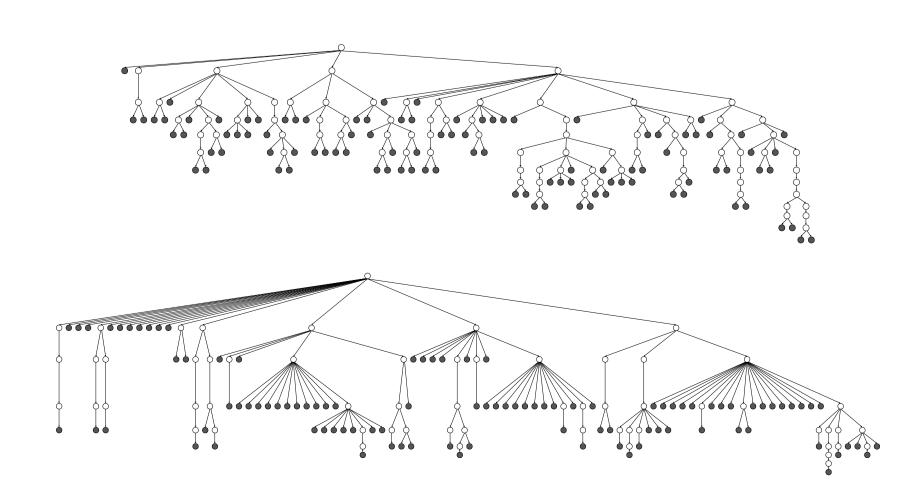
•For discrete models (e.g. $H(\phi) = Multinomial(\phi))$, $E[\phi]$ is a sufficient statistic

•Then the computation is easy: by the martingale condition, $E[f(\theta_c) | \theta_v] = f(\theta_v)$, so $E[\phi | \theta_v] = f(\theta_v)$ data size



Note that the depth of the nCRP grows with the data, but the depth of TSSB does not.

•Comparison 2: samples from the prior for |Data|=100



Top: nCRP, bottom: TSSB; note that TSSB is very wide and shallow.

