Minimax Rates for Memory-Constrained
Sparse Linear Regression

Resource-Constrained Learning

How do we solve statistical problems with limited resources?

e cOmmunication / memory constraints (Zhang et al., 2013; Garg et al.,
2014; Shamir, 2014)

e privacy, computation constraints (Kasiviswanathan et al., 2011; Duchi et
al., 2013; Berthet and Rigollet, 2013)

e NP-hardness of sparse regression (Zhang et al., 2014; Natarajan, 1995)
This work: sparse linear regression under memory constraints.

Setting

Sparse linear regression in R¢:
o V) = (w*, X0y 4 )
o |wio=k, k < d
Memory constraint:
o (Y X)) observed as read-only stream
e Only keep b bits of state 7Y between successive observations

Problem Statement
How much data n is needed to obtain estimator w with

E[l|w — w*||3] < €?

Classical case (no memory constraint):
Theorem (Wainwright, 2009).

With memory constraints b:
Theorem (S. & Duchi, 2015).
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Exponential increase if b < d!
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Proof Overview

e Lower bound:

— information-theoretic
— strong data-processing inequality

e Upper bound:

— count-min sketch + ¢'-regularized dual averaging
— more regularization — easier sketching problem

Lower Bound Construction

e Split coordinates into £ blocks of size d/k
e w* in each block: single non-zero coordinate J, 6 with equal probability
e Direct sum argument: reduce to k =1

J =2
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e Estimation to testing:
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Looking ahead: bound KL between P; and base distribution F;

Some Information Theory

e Let X ~ Uniform({%1}9) o

o Let P;(Z(")) be distribution conditioned on J = j = —

o Let 7(Z!"") be distribution with Y independent of X /_flﬂ\
e Assouad’s method:
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e Intuition: KL (F, || P;) small unless Z stores info
about X;
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Strong Data-Processing Inequality

Focus on a single index Z = ZU, with 2 = 21~ fixed.
Proposition. For any z,

KL(Py(Z | 2) | P{(Z | 2)) <40°I(X;; Z | Y, Z = 2)
<40°I(X;;Z,Y | Z =3)

mutual information

Plug into Assouad:
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Only get %Qb bits per round!

Upper Bound

Solve ¢*-regularized dual averaging problem (Xiao, 2010), A > 1:

w' = argmin {(9(1),w> + )\\/ﬁHle} ,

w

Hard part: determine support of w(®.

e Need to distinguish |6;| > A\y/n (signal) from |0,| ~ /n (noise)

dlog(d)

e Can use count-min sketch, memory usage ~ 2

— computational-statistical tradeoff; seen before in ¢* case
(Shalev-Shwartz & Zhang, 2013; Bruer et al., 2014)

Discussion

Summary:
e Upper and lower bounds on memory-constrained regression

e Lower bound: extend data processing inequality to handle covariates

e Upper bound: use ¢!-regularizer to reduce to sketching

Future work:
e Close the gap (kd/be vs kd/be?)
e Weaken upper bound assumptions
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