Minimax Rates for Memory-Constrained Sparse Linear Regression

Resource-Constrained Learning

How do we solve statistical problems with limited resources?

- communication / memory constraints (Zhang et al., 2013; Garg et al., 2014; Shamir, 2014)
- privacy, computation constraints (Kasiviswanathan et al., 2011; Duchi et al., 2013; Berthet and Rigollet, 2013)
- NP-hardness of sparse regression (Zhang et al., 2014; Natarajan, 1995)

This work: sparse linear regression under memory constraints.

Setting

Sparse linear regression in \mathbb{R}^d :

- $Y^{(i)} = \langle w^*, X^{(i)} \rangle + \epsilon^{(i)}$
- $||w^*||_0 = k, k \ll d$

Memory constraint:

- $(Y^{(i)}, X^{(i)})$ observed as read-only stream
- Only keep b bits of state $Z^{(i)}$ between successive observations

Problem Statement

How much data n is needed to obtain estimator \hat{w} with

$$\mathbb{E}[\|\hat{w} - w^*\|_2^2] \le \epsilon?$$

Classical case (no memory constraint):

Theorem (Wainwright, 2009).

$$\frac{k}{\epsilon}\log(d) \lesssim n \lesssim \frac{k}{\epsilon}\log(d)$$

With memory constraints *b*:

Theorem (S. & Duchi, 2015).

$$\frac{k}{\epsilon} \frac{d}{b} \lesssim n \lesssim \frac{k}{\epsilon^2} \frac{d}{b}$$

Exponential increase if $b \ll d!$

- strong data-processing inequality
- count-min sketch + ℓ^1 -regularized dual averaging – more regularization \rightarrow easier sketching problem
- w^* in each block: single non-zero coordinate J, $\pm \delta$ with equal probability • Direct sum argument: reduce to k = 1

- Let $P_i(Z^{(1:n)})$ be distribution conditioned on J = j• Let $P_0(Z^{(1:n)})$ be distribution with Y independent of X • Assouad's method:

 $\mathbb{P}[.$

Jacob Steinhardt John Duchi

{jsteinha, jduchi}@stanford.edu

Proof Overview

- Lower bound:
- information-theoretic

$$W^* \xrightarrow{X, Y} \xrightarrow{db} Z$$

$$\chi^{\underline{b}}_{\overline{d}}$$

• Upper bound:

Lower Bound Construction

• Split coordinates into k blocks of size d/k

• Estimation to testing:

$$\mathbb{E}[\|w^* - \hat{w}\|_2^2] \ge \frac{\delta^2}{2} \mathbb{P}[J \neq \hat{J}]$$

Looking ahead: bound KL between P_i and base distribution P_0

Some Information Theory

• Let $X \sim \text{Uniform}(\{\pm 1\}^d)$

$$J \neq \hat{J}] \ge \frac{1}{2} - \sqrt{\frac{1}{d} \sum_{j=1}^{d} \operatorname{KL} \left(P_0(Z^{(1:n)}) \| P_j(Z^{(1:n)}) \right)}$$

• Intuition: $KL(P_0 \parallel P_i)$ small unless Z stores info about X_i

Strong Data-Processing Inequality

Proposition. For any \hat{z} ,

Plug into Assouad:

Only get $\frac{4\delta^2 b}{d}$ bits per round!

 $w^{(i)}$

 $heta^{(i)}$

Hard part: determine support of $w^{(i)}$.

Summary:

- Future work:

Focus on a single index $Z = Z^{(i)}$, with $\hat{z} = z^{(1:i-1)}$ fixed. $\operatorname{KL}\left(P_0(Z \mid \hat{z}) \parallel P_j(Z \mid \hat{z})\right) \le 4\delta^2 I(X_j; Z \mid Y, \hat{Z} = \hat{z})$

 $\leq 4\delta^2 I(X_j; Z, Y \mid \hat{Z} = \hat{z})$

$$\operatorname{KL}(P_0 \parallel P_j) \leq \frac{4\delta^2}{d} \sum_{j=1}^d I(X_j; Z, Y \mid \hat{Z})$$
$$\leq \frac{4\delta^2}{d} \underbrace{I(X; Z, Y \mid \hat{Z})}_{b+O(1)}$$

Upper Bound

Solve ℓ^1 -regularized dual averaging problem (Xiao, 2010), $\lambda \gg 1$:

$$= \underset{w}{\operatorname{argmin}} \left\{ \langle \theta^{(i)}, w \rangle + \lambda \sqrt{n} \| w \|_{1} \right\} \\ = \sum_{i'=1}^{i-1} x^{(i')} (y^{(i')} - \langle w^{(i')}, x^{(i')} \rangle).$$

• Need to distinguish $|\theta_j| \ge \lambda \sqrt{n}$ (signal) from $|\theta_j| \approx \sqrt{n}$ (noise)

• Can use count-min sketch, memory usage $\approx \frac{d \log(d)}{\lambda^2}$ \implies computational-statistical tradeoff; seen before in ℓ^2 case (Shalev-Shwartz & Zhang, 2013; Bruer et al., 2014)

Discussion

• Upper and lower bounds on memory-constrained regression • Lower bound: extend data processing inequality to handle covariates • Upper bound: use ℓ^1 -regularizer to reduce to sketching

• Close the gap $(kd/b\epsilon \text{ vs } kd/b\epsilon^2)$ • Weaken upper bound assumptions