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Resource-Constrained Learning
How do we solve statistical problems with limited resources?
• communication / memory constraints (Zhang et al., 2013; Garg et al.,

2014; Shamir, 2014)

• privacy, computation constraints (Kasiviswanathan et al., 2011; Duchi et
al., 2013; Berthet and Rigollet, 2013)

• NP-hardness of sparse regression (Zhang et al., 2014; Natarajan, 1995)
This work: sparse linear regression under memory constraints.

Setting
Sparse linear regression in Rd:
• Y (i) = 〈w∗, X(i)〉 + ε(i)

• ‖w∗‖0 = k, k � d

Memory constraint:
• (Y (i), X(i)) observed as read-only stream

• Only keep b bits of state Z(i) between successive observations
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Problem Statement
How much data n is needed to obtain estimator ŵ with

E[‖ŵ − w∗‖22] ≤ ε?

Classical case (no memory constraint):

Theorem (Wainwright, 2009).
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With memory constraints b:

Theorem (S. & Duchi, 2015).
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Exponential increase if b� d!

Proof Overview
• Lower bound:

– information-theoretic
– strong data-processing inequality
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• Upper bound:
– count-min sketch + `1-regularized dual averaging
– more regularization→ easier sketching problem

Lower Bound Construction
• Split coordinates into k blocks of size d/k
• w∗ in each block: single non-zero coordinate J , ±δ with equal probability
• Direct sum argument: reduce to k = 1
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• Estimation to testing:

E[‖w∗ − ŵ‖22] ≥
δ2
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Looking ahead: bound KL between Pj and base distribution P0

Some Information Theory
• Let X ∼ Uniform({±1}d)
• Let Pj(Z(1:n)) be distribution conditioned on J = j

• Let P0(Z
(1:n)) be distribution with Y independent of X

• Assouad’s method:
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• Intuition: KL (P0 ‖ Pj) small unless Z stores info
about Xj
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Strong Data-Processing Inequality
Focus on a single index Z = Z(i), with ẑ = z(1:i−1) fixed.

Proposition. For any ẑ,

KL (P0(Z | ẑ) ‖ Pj(Z | ẑ)) ≤ 4δ2I(Xj;Z | Y, Ẑ = ẑ)

≤ 4δ2 I(Xj;Z, Y | Ẑ = ẑ)︸ ︷︷ ︸
mutual information

Plug into Assouad:
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Only get 4δ2b
d bits per round!

Upper Bound
Solve `1-regularized dual averaging problem (Xiao, 2010), λ� 1:

w(i) = argmin
w

{
〈θ(i), w〉 + λ

√
n‖w‖1

}
,

θ(i) =

i−1∑
i′=1

x(i
′)(y(i

′) − 〈w(i′), x(i
′)〉).

Hard part: determine support of w(i).

• Need to distinguish |θj| ≥ λ
√
n (signal) from |θj| ≈

√
n (noise)

• Can use count-min sketch, memory usage ≈ d log(d)
λ2

=⇒ computational-statistical tradeoff; seen before in `2 case
(Shalev-Shwartz & Zhang, 2013; Bruer et al., 2014)

Discussion
Summary:

• Upper and lower bounds on memory-constrained regression

• Lower bound: extend data processing inequality to handle covariates

• Upper bound: use `1-regularizer to reduce to sketching

Future work:

• Close the gap (kd/bε vs kd/bε2)

•Weaken upper bound assumptions
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