Permutations with Ascending and Descending Blocks

Jacob Steinhardt
Massachusetts Institute of Technology

August 11, 2009

Definition
A descent of a permutation $\pi \in S_{n}$ is an index $i, 1 \leq i<n$, such that $\pi(i)>\pi(i+1)$.

Definition

A descent of a permutation $\pi \in S_{n}$ is an index $i, 1 \leq i<n$, such that $\pi(i)>\pi(i+1)$.

Question

How many permutations in S_{n} have a given descent set S and lie in a given conjugacy class \mathcal{C} ?

Definition

A permutation π is $\left(a_{1}, \ldots, a_{k}\right)$-ascending if π ascends in consecutive blocks of lengths a_{1}, \ldots, a_{k}.

Definition

A permutation π is $\left(a_{1}, \ldots, a_{k}\right)$-ascending if π ascends in consecutive blocks of lengths a_{1}, \ldots, a_{k}.

Example
The 6 (2, 2)-ascending permutations are

$12 \mid 34$	$13 \mid 24$
$14 \mid 23$	$23 \mid 14$
$24 \mid 13$	$34 \mid 12$

Definition

An ornament is a multiset of cycles where each vertex of each cycle is labeled (colored) by an integer between 1 and k.

Definition

An ornament is a multiset of cycles where each vertex of each cycle is labeled (colored) by an integer between 1 and k.

Definition

An ornament is $\left(a_{1}, \ldots, a_{k}\right)$-compatible if the number of vertices labeled i is equal to a_{i}.

Definition

An ornament is a multiset of cycles where each vertex of each cycle is labeled (colored) by an integer between 1 and k.

Definition

An ornament is $\left(a_{1}, \ldots, a_{k}\right)$-compatible if the number of vertices labeled i is equal to a_{i}.

Example
(a) and (b) are the same (2,3)-compatible ornament. (c) is $(3,4)$-compatible.
(a)

(b)

(c)

Theorem (Gessel and Reutenauer, 1993)
The $\left(a_{1}, \ldots, a_{k}\right)$-ascending permutations are in bijection with $\left(a_{1}, \ldots, a_{k}\right)$-compatible ornaments where every cycle is aperiodic. This bijection preserves cycle structure.

Theorem (Gessel and Reutenauer, 1993)

The $\left(a_{1}, \ldots, a_{k}\right)$-ascending permutations are in bijection with $\left(a_{1}, \ldots, a_{k}\right)$-compatible ornaments where every cycle is aperiodic. This bijection preserves cycle structure.

Example

$$
\left(a_{1}, a_{2}\right)=(7,5), \pi=134891012 \mid 256711
$$

Theorem (Gessel and Reutenauer, 1993)

The $\left(a_{1}, \ldots, a_{k}\right)$-ascending permutations are in bijection with $\left(a_{1}, \ldots, a_{k}\right)$-compatible ornaments where every cycle is aperiodic.
This bijection preserves cycle structure.
Example
$\left(a_{1}, a_{2}\right)=(7,5), \pi=134891012 \mid 256711$

Definition

An $\left(a_{1}, \ldots, a_{k}, S\right)$-permutation is a permutation that descends in the blocks A_{i} with $i \in S$ and ascends in all other blocks.

Definition

An $\left(a_{1}, \ldots, a_{k}, S\right)$-permutation is a permutation that descends in the blocks A_{i} with $i \in S$ and ascends in all other blocks.

Example
$\left(a_{1}, a_{2}\right)=(8,10), S=\{1\}$
$\pi=181715141312119 \mid 123456781016$

Definition

An $\left(a_{1}, \ldots, a_{k}, S\right)$-permutation is a permutation that descends in the blocks A_{i} with $i \in S$ and ascends in all other blocks.

Example
$\left(a_{1}, a_{2}\right)=(8,10), S=\{1\}$
$\pi=181715141312119 \mid 123456781016$
Question
Can we generalize the Gessel-Reutenauer bijection to (a_{1}, \ldots, a_{k}, S)-permutations?

Theorem

There is an injection from the $\left(a_{1}, \ldots, a_{k}, S\right)$-permutations to the $\left(a_{1}, \ldots, a_{k}\right)$-compatible ornaments. This injection preserves cycle structure.

Theorem

There is an injection from the $\left(a_{1}, \ldots, a_{k}, S\right)$-permutations to the $\left(a_{1}, \ldots, a_{k}\right)$-compatible ornaments. This injection preserves cycle structure.

Example
$\left(a_{1}, a_{2}\right)=(8,10), S=\{1\}$
$\pi=181715141312119 \mid 123456781016$

Theorem

There is an injection from the $\left(a_{1}, \ldots, a_{k}, S\right)$-permutations to the $\left(a_{1}, \ldots, a_{k}\right)$-compatible ornaments. This injection preserves cycle structure.

Example
$\left(a_{1}, a_{2}\right)=(8,10), S=\{1\}$
$\pi=181715141312119 \mid 123456781016$

Corollary (Conjectured in (Eriksen, Freij, Wästlund, 2007))

For any permutation σ of $\{1, \ldots, k\}$ and conjugacy class \mathcal{C} of S_{n}, the $\left(a_{1}, \ldots, a_{k}, S\right)$-permutations in \mathcal{C} are in bijection with the $\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}, \sigma(S)\right)$-permutations in \mathcal{C}.

Corollary (Conjectured in (Eriksen, Freij, Wästlund, 2007))

For any permutation σ of $\{1, \ldots, k\}$ and conjugacy class \mathcal{C} of S_{n}, the $\left(a_{1}, \ldots, a_{k}, S\right)$-permutations in \mathcal{C} are in bijection with the $\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}, \sigma(S)\right)$-permutations in \mathcal{C}.

Corollary (Theorem 7.1 in (Gessel and Reutenauer, 1993))
If \mathcal{C} satisfies certain mild properties, then the number of elements of \mathcal{C} with descent set D equals the number of elements of \mathcal{C} with descent set $\{1, \ldots, n-1\} \backslash D$.

Corollary (Conjectured in (Eriksen, Freij, Wästlund, 2007))

For any permutation σ of $\{1, \ldots, k\}$ and conjugacy class \mathcal{C} of S_{n}, the $\left(a_{1}, \ldots, a_{k}, S\right)$-permutations in \mathcal{C} are in bijection with the $\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}, \sigma(S)\right)$-permutations in \mathcal{C}.

Corollary (Theorem 7.1 in (Gessel and Reutenauer, 1993))
If \mathcal{C} satisfies certain mild properties, then the number of elements of \mathcal{C} with descent set D equals the number of elements of \mathcal{C} with descent set $\{1, \ldots, n-1\} \backslash D$.

Corollary (Theorem 7.2 in (Gessel and Reutenauer, 1993))
The number of involutions with descent set D equals the number of involutions with descent set $\{1, \ldots, n-1\} \backslash D$.

Question
What properties does our map have when applied to other classes of permutations?

Question
What properties does our map have when applied to other classes of permutations?

- not injective in general

Question

What properties does our map have when applied to other classes of permutations?

- not injective in general
- injective when applied to permutations with a given descent set (can we find its image?)

Question

What properties does our map have when applied to other classes of permutations?

- not injective in general
- injective when applied to permutations with a given descent set (can we find its image?)
- do the fibers have bounded size when applied to permutations with a bounded number of inversions in each block?

Question

What properties does our map have when applied to other classes of permutations?

- not injective in general
- injective when applied to permutations with a given descent set (can we find its image?)
- do the fibers have bounded size when applied to permutations with a bounded number of inversions in each block?

Question

The Gessel-Reutenauer bijection implies that there are $\binom{a_{1}+\ldots+a_{k}}{a_{1}, \ldots, a_{k}}$ A-compatible ornaments such that every cycle is aperiodic. Is there a simpler proof of this fact?

Thank you.

- This research was supervised by Joe Gallian at the University of Minnesota Duluth, supported by the National Science Foundation and the Department of Defense (grant number DMS 0754106) and the National Security Agency (grant number H98230-06-1-0013).
- e-mail: jsteinha@mit.edu

