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Question
How many permutations in Sn have a given descent set S and lie
in a given conjugacy class C?
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consecutive blocks of lengths a1, . . . , ak .



Definition
A permutation π is (a1, . . . , ak)-ascending if π ascends in
consecutive blocks of lengths a1, . . . , ak .

Example

The 6 (2, 2)-ascending permutations are

12|34 13|24
14|23 23|14
24|13 34|12
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Definition
An ornament is a multiset of cycles where each vertex of each
cycle is labeled (colored) by an integer between 1 and k .

Definition
An ornament is (a1, . . . , ak)-compatible if the number of vertices
labeled i is equal to ai .

Example

(a) and (b) are the same (2, 3)-compatible ornament. (c) is
(3, 4)-compatible.

(a) (b) (c)



Theorem (Gessel and Reutenauer, 1993)

The (a1, . . . , ak)-ascending permutations are in bijection with

(a1, . . . , ak)-compatible ornaments where every cycle is aperiodic.

This bijection preserves cycle structure.
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Example

(a1, a2) = (7, 5), π = 1 3 4 8 9 10 12 |2 5 6 7 11
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(a1, a2) = (8, 10), S = {1}
π = 18 17 15 14 13 12 11 9 | 1 2 3 4 5 6 7 8 10 16



Definition
An (a1, . . . , ak , S)-permutation is a permutation that descends in
the blocks Ai with i ∈ S and ascends in all other blocks.

Example

(a1, a2) = (8, 10), S = {1}
π = 18 17 15 14 13 12 11 9 | 1 2 3 4 5 6 7 8 10 16

Question
Can we generalize the Gessel-Reutenauer bijection to
(a1, . . . , ak , S)-permutations?
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Theorem
There is an injection from the (a1, . . . , ak , S)-permutations to the

(a1, . . . , ak)-compatible ornaments. This injection preserves cycle

structure.

Example

(a1, a2) = (8, 10), S = {1}
π = 18 17 15 14 13 12 11 9 | 1 2 3 4 5 6 7 8 10 16

1

18 16

8

9
2

17 10

3

15 7

11 4

14 6

12

5 13



Theorem
There is an injection from the (a1, . . . , ak , S)-permutations to the

(a1, . . . , ak)-compatible ornaments. This injection preserves cycle

structure.

Example

(a1, a2) = (8, 10), S = {1}
π = 18 17 15 14 13 12 11 9 | 1 2 3 4 5 6 7 8 10 16



Corollary (Conjectured in (Eriksen, Freij, Wästlund, 2007))

For any permutation σ of {1, . . . , k} and conjugacy class C of Sn,

the (a1, . . . , ak , S)-permutations in C are in bijection with the

(aσ(1), . . . , aσ(k), σ(S))-permutations in C.
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descent set {1, . . . , n − 1}\D.



Corollary (Conjectured in (Eriksen, Freij, Wästlund, 2007))

For any permutation σ of {1, . . . , k} and conjugacy class C of Sn,

the (a1, . . . , ak , S)-permutations in C are in bijection with the

(aσ(1), . . . , aσ(k), σ(S))-permutations in C.

Corollary (Theorem 7.1 in (Gessel and Reutenauer, 1993))

If C satisfies certain mild properties, then the number of elements

of C with descent set D equals the number of elements of C with

descent set {1, . . . , n − 1}\D.

Corollary (Theorem 7.2 in (Gessel and Reutenauer, 1993))

The number of involutions with descent set D equals the number

of involutions with descent set {1, . . . , n − 1}\D.
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Question
What properties does our map have when applied to other classes
of permutations?

◮ not injective in general

◮ injective when applied to permutations with a given descent
set (can we find its image?)

◮ do the fibers have bounded size when applied to permutations
with a bounded number of inversions in each block?

Question
The Gessel-Reutenauer bijection implies that there are

(

a1+...+ak

a1,...,ak

)

A-compatible ornaments such that every cycle is aperiodic. Is there
a simpler proof of this fact?
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