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Question
How many permutations in S, have a given descent set S and lie
in a given conjugacy class C?
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A permutation 7 is (a1, ..., ax)-ascending if w ascends in
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Example

The 6 (2,2)-ascending permutations are

1234 13[24
1423 23[14
24]13 3412
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Definition

An ornament is (a1, ..., ax)-compatible if the number of vertices
labeled i is equal to a;.

Example

(a) and (b) are the same (2, 3)-compatible ornament. (c) is
(3,4)-compatible.
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Theorem (Gessel and Reutenauer, 1993)

The (a1, ..., ak)-ascending permutations are in bijection with

(a1, ..., ax)-compatible ornaments where every cycle is aperiodic.
This bijection preserves cycle structure.
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Example
(a1,22) = (7,5), 7=134891012 2567 11

P\@ o O



Theorem (Gessel and Reutenauer, 1993)

The (a1, ..., ak)-ascending permutations are in bijection with
(a1, ..., ax)-compatible ornaments where every cycle is aperiodic.
This bijection preserves cycle structure.

Example
(a1,22) = (7,5), 7=134891012 2567 11



Definition
An (a1,...,ak,S)-permutation is a permutation that descends in
the blocks A; with i € S and ascends in all other blocks.



Definition
An (a1,...,ak,S)-permutation is a permutation that descends in
the blocks A; with i € S and ascends in all other blocks.

Example

(a1,a2) = (8,10), S = {1}
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Definition
An (a1,...,ak,S)-permutation is a permutation that descends in
the blocks A; with i € S and ascends in all other blocks.

Example

(a1,a2) = (8,10), S = {1}
m=181715141312119|123456781016

Question

Can we generalize the Gessel-Reutenauer bijection to
(a1,...,ak,S)-permutations?
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There is an injection from the (a1, ..., ak, S)-permutations to the
(a1, ..., ax)-compatible ornaments. This injection preserves cycle
Structure.



Theorem

There is an injection from the (a1, ..., ak, S)-permutations to the
(a1, ..., ax)-compatible ornaments. This injection preserves cycle
structure.
Example

(21,32):(8,10),52{1}
7=181715141312119|123456781016
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Theorem

There is an injection from the (a1, ..., ak, S)-permutations to the
(a1, ..., ax)-compatible ornaments. This injection preserves cycle
structure.
Example

(21,32):(8,10),52{1}
7=181715141312119|123456781016
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Corollary (Conjectured in (Eriksen, Freij, Wastlund, 2007))

For any permutation o of {1,...,k} and conjugacy class C of S,,
the (a1, ..., ak, S)-permutations in C are in bijection with the
(35(1)s - - » 30 (k), 0(S))-permutations in C.
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Corollary (Conjectured in (Eriksen, Freij, Wastlund, 2007))

For any permutation o of {1,...,k} and conjugacy class C of S,,
the (a1, ..., ak, S)-permutations in C are in bijection with the
(35(1)s - - » 30 (k), 0(S))-permutations in C.

Corollary (Theorem 7.1 in (Gessel and Reutenauer, 1993))

If C satisfies certain mild properties, then the number of elements
of C with descent set D equals the number of elements of C with
descent set {1,...,n—1}\D.

Corollary (Theorem 7.2 in (Gessel and Reutenauer, 1993))

The number of involutions with descent set D equals the number
of involutions with descent set {1,...,n—1}\D.
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Question
What properties does our map have when applied to other classes
of permutations?

» not injective in general

» injective when applied to permutations with a given descent
set (can we find its image?)

» do the fibers have bounded size when applied to permutations
with a bounded number of inversions in each block?

Question
The Gessel-Reutenauer bijection implies that there are (a:’:::sz)
A-compatible ornaments such that every cycle is aperiodic. Is there
a simpler proof of this fact?
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