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Motivation

Goal Given an (un-normalized) target distribution
f ∗(x), p∗(x) = 1

Z f ∗(x), want to compute
normalization constant Z .

I Extends naturally to marginals / conditionals, but
focus on Z for concreteness.
Issue Often computationally intractable, so use
some approximation f̂ to f ∗.

Contributions
I Introduce abstract particles, which interpolate

between particle and variational inference.
I Identify large, tractable family of abstract

particles using hierarchical decompositions,
including models with high tree-width.

I Demonstrate improved performance over beam
search and sequential Monte Carlo.

Illustration: Variational vs. Particle
Methods

Goal: infer missing characters in r e c e
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Particles provide precision but lack coverage,
while variational inference lacks precision.

Our Proposal

Define approximations over intermediate regions.
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Goal Stitch together approximations at multiple levels to
simultaneously obtain precision (from lower levels) and
coverage (from higher levels).

Stitching Together Models

Question How to combine the different models?

re ? ? ? ce

re ? ?ace re ? ?ice

replace retrace rejoice

⇓
f̂ :

Answer Just use most precise model available at each
point (relies on nested structure, i.e. the regions form a
hierarchical decomposition).

Inference

Can compute
∑

x∈X f̂ (x) as long as we can
compute sums over each region. Proof:
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Generalizing the Construction

Let X be some space. Suppose we have a hierarchical decomposition A ⊆ 2X together with an
approximation f̂a to f ∗ defined on each region a ∈ A.

I If a = {x0} is a singleton set (bottom), can have f̂a(x0) = f ∗(x0).
I If a = X (top), will need to drop most of the dependencies.
I For intermediate values of a (for instance, fixing the values of

certain variables) can keep some subset of the dependencies.

Set f̂ (x) def
= f̂a(x), where a is the smallest region containing x .

Can think of each region a ∈ A as an abstract particle.
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A Family of Approximations

A hierarchical decomposition A leads to an approximation f̂ (see bottom left panel).
We would like to define a family of approximations and choose the best one.
Key idea Every subset B of a hierarchical decomposition A is itself a hierarchical decomposition.

I Can let A have large cardinality and search for a small cardinality subset B that yields a good approximation.
Example of A and several possible subsets B:
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Search Strategy

Suppose that A has size 1000 and we want a subset of size 100:
(1000

100

)
possibilities; far too many!

Solution “Abstract beam search.” Iteratively refine and prune a candidate decomposition.
I Refine: split each region into smaller regions (to gain precision).
I Prune: greedily keep a small number of regions that yield a good approximation (so we can refine again).
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Applies naturally to filtering tasks (refine on current state to go to next time step, prune to save resources).

Experiments

n-gram text reconstruction (n = 8) Factorial HMM (100 states, 15 factors)
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Discussion

I Abstract particles combine the advantages of variational and particle inference.
I Hierarchical decompositions provide a framework for reasoning about the optimal representation for

approximate inference.
I Related work: split variational inference (Bouchard & Zoeter, 2009).
I Also: coarse-to-fine inference (Petrov et al., 2006; Weiss & Taskar, 2010; many others).
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