Motivation

Goal Given an (un-normalized) target distribution $f^*(x), p^*(x) = \frac{1}{7}f^*(x)$, want to compute normalization constant Z.

Extends naturally to marginals / conditionals, but focus on Z for concreteness.

Issue Often computationally intractable, so use some approximation \hat{f} to f^* .

Illustration: Variational vs. Particle Methods

Goal: infer	missir	ng chara	cte	ers	in	re	0		_	_ C e
Particle	Actual		Variational							
0.5 replace	0.33	replace								7
0.5 retrace	0.33	retrace	re	0.33 0.33 0.33	j p t	0.33 0.33 0.33	l O r	0.66 0.33	a i	се
	0.33	rejoice		0.00	ι	0.00	1			
	0.01									
Deutielee eur				..						

Particles provide **precision** but lack **coverage**, while variational inference lacks precision.

Stitching Together Models

Answer Just use most precise model available at each point (relies on nested structure, i.e. the regions form a hierarchical decomposition).

Generalizing the Construction

Let X be some space. Suppose we have a hierarchical decomposition $A \subseteq 2^X$ together with an approximation \hat{f}_a to f^* defined on each region $a \in A$.

If $a = \{x_0\}$ is a singleton set (bottom), can have $\hat{f}_a(x_0) = f^*(x_0)$.

If a = X (top), will need to drop most of the dependencies.

For intermediate values of *a* (for instance, fixing the values of certain variables) can keep some subset of the dependencies.

Set $\hat{f}(x) \stackrel{\text{def}}{=} \hat{f}_a(x)$, where *a* is the smallest region containing *x*. Can think of each region $a \in A$ as an *abstract particle*.

Filtering with Abstract Particles Jacob Steinhardt, Percy Liang Stanford University

Contributions

Introduce abstract particles, which interpolate between particle and variational inference. Identify large, tractable family of abstract particles using hierarchical decompositions, including models with high tree-width.

Demonstrate improved performance over beam search and sequential Monte Carlo.

Our Proposal

Define approximations over intermediate regions.

Goal Stitch together approximations at multiple levels to simultaneously obtain precision (from lower levels) and coverage (from higher levels).

Inference

Can compute $\sum_{x \in X} \hat{f}(x)$ as long as we can compute sums over each region. Proof:

A hierarchical decomposition A leads to an approximation \hat{f} (see bottom left panel). We would like to define a family of approximations and choose the best one. Key idea Every subset B of a hierarchical decomposition A is itself a hierarchical decomposition. Can let A have large cardinality and search for a small cardinality subset B that yields a good approximation. Example of *A* and several possible subsets *B*:

Suppose that A has size 1000 and we want a subset of size 100: $\binom{1000}{100}$ possibilities; far too many! **Solution** "Abstract beam search." Iteratively *refine* and *prune* a candidate decomposition. **Refine**: split each region into smaller regions (to gain precision). Prune: greedily keep a small number of regions that yield a good approximation (so we can refine again).

Discussion

A Family of Approximations

Search Strategy

Applies naturally to filtering tasks (refine on current state to go to next time step, prune to save resources).

Experiments

Abstract particles combine the advantages of variational and particle inference. Hierarchical decompositions provide a framework for reasoning about the optimal representation for approximate inference.

Related work: split variational inference (Bouchard & Zoeter, 2009). ► Also: coarse-to-fine inference (Petrov et al., 2006; Weiss & Taskar, 2010; many others).

